Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

JAK2V617F negatively regulates p53 stabilization by enhancing MDM2 via La expression in myeloproliferative neoplasms

Abstract

JAK2V617F is a gain of function mutation that promotes cytokine-independent growth of myeloid cells and accounts for a majority of myeloproliferative neoplasms (MPN). Mutations in p53 are rarely found in these diseases before acute leukemia transformation, but this does not rule out a role for p53 deregulation in disease progression. Using Ba/F3-EPOR cells and ex vivo cultured CD34+ cells from MPN patients, we demonstrate that expression of JAK2V617F affected the p53 response to DNA damage. We show that E3 ubiquitin ligase MDM2 accumulated in these cells, due to an increased translation of MDM2 mRNA. Accumulation of the La autoantigen, which interacts with MDM2 mRNA and promotes its translation, was responsible for the increase in MDM2 protein level and the subsequent degradation of p53 after DNA damage. Downregulation of La protein or cell treatment with nutlin-3, a MDM2 antagonist, restored the p53 response to DNA damage and the cytokine-dependence of Ba/F3-EPOR-JAK2V617F cells. Altogether, these data indicate that the JAK2V617F mutation affects p53 response to DNA damage through the upregulation of La antigen and accumulation of MDM2. They also suggest that p53 functional inactivation accounts for the cytokine hypersensitivity of JAK2V617F MPN and might have a role in disease progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Akyuz N, Boehden GS, Susse S, Rimek A, Preuss U, Scheidtmann KH et al. (2002). DNA substrate dependence of p53-mediated regulation of double-strand break repair. Mol Cell Biol 22: 6306–6317.

    Article  CAS  Google Scholar 

  • Barosi G, Ambrosetti A, Finelli C, Grossi A, Leoni P, Liberato NL et al. (1999). The Italian Consensus Conference on diagnostic criteria for myelofibrosis with myeloid metaplasia. Br J Haematol 104: 730–737.

    Article  CAS  Google Scholar 

  • Baxter EJ, Scott LM, Campbell PJ, East C, Fourouclas N, Swanton S et al. (2005). Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 365: 1054–1061.

    Article  CAS  Google Scholar 

  • Berthebaud M, Riviere C, Jarrier P, Foudi A, Zhang Y, Compagno D et al. (2005). RGS16 is a negative regulator of SDF-1-CXCR4 signaling in megakaryocytes. Blood 106: 2962–2968.

    Article  CAS  Google Scholar 

  • Bertrand P, Saintigny Y, Lopez BS . (2004). p53's double life: transactivation-independent repression of homologous recombination. Trends Genet 20: 235–243.

    Article  CAS  Google Scholar 

  • Candeias MM, Malbert-Colas L, Powell DJ, Daskalogianni C, Maslon MM, Naski N et al. (2008). p53 mRNA controls p53 activity by managing Mdm2 functions. Nat Cell Biol 10: 1098–1105.

    Article  CAS  Google Scholar 

  • Capoulade C, Bressac-de Paillerets B, Lefrere I, Ronsin M, Feunteun J, Tursz T et al. (1998). Overexpression of MDM2, due to enhanced translation, results in inactivation of wild-type p53 in Burkitt's lymphoma cells. Oncogene 16: 1603–1610.

    Article  CAS  Google Scholar 

  • Cummings WJ, Yabuki M, Ordinario EC, Bednarski DW, Quay S, Maizels N . (2007). Chromatin structure regulates gene conversion. PLoS Biol 5: e246.

    Article  Google Scholar 

  • Dawson MA, Bannister AJ, Gottgens B, Foster SD, Bartke T, Green AR et al. (2009). JAK2 phosphorylates histone H3Y41 and excludes HP1alpha from chromatin. Nature 461: 819–822.

    Article  CAS  Google Scholar 

  • Faderl S, Kantarjian HM, Estey E, Manshouri T, Chan CY, Rahman Elsaied A et al. (2000). The prognostic significance of p16(INK4a)/p14(ARF) locus deletion and MDM-2 protein expression in adult acute myelogenous leukemia. Cancer 89: 1976–1982.

    Article  CAS  Google Scholar 

  • Feinstein E, Cimino G, Gale RP, Alimena G, Berthier R, Kishi K et al. (1991). p53 in chronic myelogenous leukemia in acute phase. Proc Natl Acad Sci USA 88: 6293–6297.

    Article  CAS  Google Scholar 

  • Freedman DA, Wu L, Levine AJ . (1999). Functions of the MDM2 oncoprotein. Cell Mol Life Sci 55: 96–107.

    Article  CAS  Google Scholar 

  • Gaidano G, Pastore C, Santini V, Nomdedeu J, Gamberi B, Capello D et al. (1997). Genetic lesions associated with blastic transformation of polycythemia vera and essential thrombocythemia. Genes Chromosomes Cancer 19: 250–255.

    Article  CAS  Google Scholar 

  • Gangat N, Strand J, Lasho TL, Finke CM, Knudson RA, Pardanani A et al. (2007). Cytogenetic studies at diagnosis in polycythemia vera: clinical and JAK2V617F allele burden correlates. Eur J Haematol 80: 197–200.

    Article  Google Scholar 

  • Goetz AW, van der Kuip H, Maya R, Oren M, Aulitzky WE . (2001). Requirement for Mdm2 in the survival effects of Bcr-Abl and interleukin 3 in hematopoietic cells. Cancer Res 61: 7635–7641.

    CAS  PubMed  Google Scholar 

  • Hernandez-Boussard T, Rodriguez-Tome P, Montesano R, Hainaut P . (1999). IARC p53 mutation database: a relational database to compile and analyze p53 mutations in human tumors and cell lines. International Agency for Research on Cancer. Hum Mutat 14: 1–8.

    Article  CAS  Google Scholar 

  • Holcik M, Korneluk RG . (2000). Functional characterization of the X-linked inhibitor of apoptosis (XIAP) internal ribosome entry site element: role of La autoantigen in XIAP translation. Mol Cell Biol 20: 4648–4657.

    Article  CAS  Google Scholar 

  • Ishiguro K, Shyam K, Penketh PG, Sartorelli AC . (2005). Role of O6-alkylguanine-DNA alkyltransferase in the cytotoxic activity of cloretazine. Mol Cancer Ther 4: 1755–1763.

    Article  CAS  Google Scholar 

  • James C, Ugo V, Le Couedic JP, Staerk J, Delhommeau F, Lacout C et al. (2005). A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 434: 1144–1148.

    Article  CAS  Google Scholar 

  • Jastrzebski K, Hannan KM, Tchoubrieva EB, Hannan RD, Pearson RB . (2007). Coordinate regulation of ribosome biogenesis and function by the ribosomal protein S6 kinase, a key mediator of mTOR function. Growth Factors 25: 209–226.

    Article  CAS  Google Scholar 

  • Kantarjian HM, Keating MJ, Talpaz M, Walters RS, Smith TL, Cork A et al. (1987). Chronic myelogenous leukemia in blast crisis. Analysis of 242 patients. Am J Med 83: 445–454.

    Article  CAS  Google Scholar 

  • Kawamata N, Ogawa S, Yamamoto G, Lehmann S, Levine RL, Pikman Y et al. (2008). Genetic profiling of myeloproliferative disorders by single-nucleotide polymorphism oligonucleotide microarray. Exp Hematol 36: 1471–1479.

    Article  CAS  Google Scholar 

  • Kralovics R, Passamonti F, Buser AS, Teo SS, Tiedt R, Passweg JR et al. (2005). A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med 352: 1779–1790.

    Article  CAS  Google Scholar 

  • Lacout C, Pisani DF, Tulliez M, Gachelin FM, Vainchenker W, Villeval JL . (2006). JAK2V617F expression in murine hematopoietic cells leads to MPD mimicking human PV with secondary myelofibrosis. Blood 108: 1652–1660.

    Article  CAS  Google Scholar 

  • Levine RL, Wadleigh M, Cools J, Ebert BL, Wernig G, Huntly BJ et al. (2005). Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 7: 387–397.

    Article  CAS  Google Scholar 

  • Liu R, Liu CB, Mohi MG, Arai K, Watanabe S . (2000). Analysis of mechanisms involved in the prevention of gamma irradiation-induced apoptosis by hGM-CSF. Oncogene 19: 571–579.

    Article  CAS  Google Scholar 

  • Maetens M, Doumont G, Clercq SD, Francoz S, Froment P, Bellefroid E et al. (2007). Distinct roles of Mdm2 and Mdm4 in red cell production. Blood 109: 2630–2633.

    Article  CAS  Google Scholar 

  • Mendrysa SM, McElwee MK, Perry ME . (2001). Characterization of the 5′ and 3′ untranslated regions in murine mdm2 mRNAs. Gene 264: 139–146.

    Article  CAS  Google Scholar 

  • Michiels JJ, Barbui T, Finazzi G, Fuchtman SM, Kutti J, Rain JD et al. (2000). Diagnosis and treatment of polycythemia vera and possible future study designs of the PVSG. Leuk Lymphoma 36: 239–253.

    Article  CAS  Google Scholar 

  • Perrotti D, Neviani P . (2007). From mRNA metabolism to cancer therapy: chronic myelogenous leukemia shows the way. Clin Cancer Res 13: 1638–1642.

    Article  CAS  Google Scholar 

  • Plo I, Nakatake M, Malivert L, de Villartay JP, Giraudier S, Villeval JL et al. (2008). JAK2 stimulates homologous recombination and genetic instability: potential implication in the heterogeneity of myeloproliferative disorders. Blood 112: 1402–1412.

    Article  CAS  Google Scholar 

  • Reilly JT . (2005). Cytogenetic and molecular genetic abnormalities in agnogenic myeloid metaplasia. Semin Oncol 32: 359–364.

    Article  CAS  Google Scholar 

  • Scolan EL, Wendling F, Barnache S, Denis N, Tulliez M, Vainchenker W et al. (2001). Germ-line deletion of p53 reveals a multistage tumor progression in spi-1/PU.1 transgenic proerythroblasts. Oncogene 20: 5484–5492.

    Article  CAS  Google Scholar 

  • Seliger B, Papadileris S, Vogel D, Hess G, Brendel C, Storkel S et al. (1996). Analysis of the p53 and MDM-2 gene in acute myeloid leukemia. Eur J Haematol 57: 230–240.

    Article  CAS  Google Scholar 

  • Sengupta S, Linke SP, Pedeux R, Yang Q, Farnsworth J, Garfield SH et al. (2003). BLM helicase-dependent transport of p53 to sites of stalled DNA replication forks modulates homologous recombination. Embo J 22: 1210–1222.

    Article  CAS  Google Scholar 

  • Shangary S, Wang S . (2009). Small-molecule inhibitors of the MDM2-p53 protein-protein interaction to reactivate p53 function: a novel approach for cancer therapy. Annu Rev Pharmacol Toxicol 49: 223–241.

    Article  CAS  Google Scholar 

  • Shide K, Shimoda HK, Kumano T, Karube K, Kameda T, Takenaka K et al. (2008). Development of ET, primary myelofibrosis and PV in mice expressing JAK2 V617F. Leukemia 22: 87–95.

    Article  CAS  Google Scholar 

  • Sieff CA, Yang J, Merida-Long LB, Lodish HF . (2010). Pathogenesis of the erythroid failure in Diamond Blackfan anaemia. Br J Haematol 148: 611–622.

    Article  CAS  Google Scholar 

  • Smith ML, Seo YR . (2002). p53 regulation of DNA excision repair pathways. Mutagenesis 17: 149–156.

    Article  CAS  Google Scholar 

  • Takagi M, Absalon MJ, McLure KG, Kastan MB . (2005). Regulation of p53 translation and induction after DNA damage by ribosomal protein L26 and nucleolin. Cell 123: 49–63.

    Article  CAS  Google Scholar 

  • Tefferi A, Sirhan S, Sun Y, Lasho T, Finke CM, Weisberger J et al. (2009). Oligonucleotide array CGH studies in myeloproliferative neoplasms: comparison with JAK2V617F mutational status and conventional chromosome analysis. Leuk Res 33: 662–664.

    Article  CAS  Google Scholar 

  • Tiedt R, Hao-Shen H, Sobas MA, Looser R, Dirnhofer S, Schwaller J et al. (2008). Ratio of mutant JAK2-V617F to wild type JAK2 determines the MPD phenotypes in transgenic mice. Blood 111: 3931–3940.

    Article  CAS  Google Scholar 

  • Trotta R, Vignudelli T, Candini O, Intine RV, Pecorari L, Guerzoni C et al. (2003). BCR/ABL activates mdm2 mRNA translation via the La antigen. Cancer Cell 3: 145–160.

    Article  CAS  Google Scholar 

  • Tsurumi S, Nakamura Y, Maki K, Omine M, Fujita K, Okamura T et al. (2002). N-ras and p53 gene mutations in Japanese patients with myeloproliferative disorders. Am J Hematol 71: 131–133.

    Article  CAS  Google Scholar 

  • Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z et al. (2004). in vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303: 844–848.

    Article  CAS  Google Scholar 

  • Wernig G, Mercher T, Okabe R, Levine RL, Lee BH, Gilliland DG . (2006). Expression of Jak2V617F causes a polycythemia vera-like disease with associated myelofibrosis in a murine bone marrow transplant model. Blood 107: 4274–4281.

    Article  CAS  Google Scholar 

  • Wong KS, Li YJ, Howard J, Ben-David Y . (1999). Loss of p53 in F-MuLV induced-erythroleukemias accelerates the acquisition of mutational events that confers immortality and growth factor independence. Oncogene 18: 5525–5534.

    Article  CAS  Google Scholar 

  • Zhao R, Follows GA, Beer PA, Scott LM, Huntly BJ, Green AR et al. (2008). Inhibition of the Bcl-xL deamidation pathway in myeloproliferative disorders. N Engl J Med 359: 2778–2789.

    Article  CAS  Google Scholar 

  • Zhou M, Gu L, Abshire TC, Homans A, Billett AL, Yeager AM et al. (2000). Incidence and prognostic significance of MDM2 oncoprotein overexpression in relapsed childhood acute lymphoblastic leukemia. Leukemia 14: 61–67.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank all the patients and the controls who participated in the study, and AstraZeneca for the gift of the JAK2 inhibitor (AZD1480). We are grateful to Drs LT Vassilev and R Fahraeus for fruitful discussion. We also thank Dr F Wendling for critical reading of the manuscript. This work was supported by grants from the Ligue Nationale Contre le Cancer (équipe labellisée 2007–2010 et 2010–2012), INCa (projets libres 2007) and INSERM. IP was a recipient from INCA, MN from the Ligue Nationale Contre le Cancer, BMM from the Fondation pour la Recherche Médicale.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I Plo.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakatake, M., Monte-Mor, B., Debili, N. et al. JAK2V617F negatively regulates p53 stabilization by enhancing MDM2 via La expression in myeloproliferative neoplasms. Oncogene 31, 1323–1333 (2012). https://doi.org/10.1038/onc.2011.313

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.313

Keywords

This article is cited by

Search

Quick links