Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A Rac1/PAK1 cascade controls β-catenin activation in colon cancer cells

Abstract

P21-activated kinase 1 (PAK1) is associated with colon cancer progression and metastasis, whereas the molecular mechanism remains elusive. Here, we show that downregulation of PAK1 in colon cancer cells reduces total β-catenin level, as well as cell proliferation. Mechanistically, PAK1 directly phosphorylates β-catenin proteins at Ser675 site and this leads to more stable and transcriptional active β-catenin. Corroborating these results, PAK1 is required for full Wnt signaling, and superactivation of β-catenin is achieved by simultaneous knockdown of adenomatous polyposis coli protein and activation of PAK1. Moreover, we show that Rac1 functions upstream of PAK1 in colon cancer cells and contributes to β-catenin phosphorylation and accumulation. We conclude that a Rac1/PAK1 cascade controls β-catenin S675 phosphorylation and full activation in colon cancer cells. Supporting this conclusion, overexpression of PAK1 is observed in 70% of colon cancer samples and is correlated with massive β-catenin accumulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Anderson CB, Neufeld KL, White RL . (2002). Subcellular distribution of Wnt pathway proteins in normal and neoplastic colon. Proc Natl Acad Sci USA 99: 8683–8688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arias-Romero LE, Chernoff J . (2008). A tale of two Paks. Biol Cell 100: 97–108.

    Article  CAS  PubMed  Google Scholar 

  • Balasenthil S, Sahin AA, Barnes CJ, Wang RA, Pestell RG, Vadlamudi RK et al. (2004). p21-activated kinase-1 signaling mediates cyclin D1 expression in mammary epithelial and cancer cells. J Biol Chem 279: 1422–1428.

    Article  CAS  PubMed  Google Scholar 

  • Bienz M, Clevers H . (2000). Linking colorectal cancer to Wnt signaling. Cell 103: 311–320.

    Article  CAS  PubMed  Google Scholar 

  • Bikkavilli RK, Feigin ME, Malbon CC . (2008). G alpha o mediates WNT-JNK signaling through dishevelled 1 and 3, RhoA family members, and MEKK 1 and 4 in mammalian cells. J Cell Sci 121: 234–245.

    Article  CAS  PubMed  Google Scholar 

  • Billin AN, Thirlwell H, Ayer DE . (2000). Beta-catenin-histone deacetylase interactions regulate the transition of LEF1 from a transcriptional repressor to an activator. Mol Cell Biol 20: 6882–6890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bokoch GM . (2003). Biology of the p21-activated kinases. Annu Rev Biochem 72: 743–781.

    Article  CAS  PubMed  Google Scholar 

  • Carter JH, Douglass LE, Deddens JA, Colligan BM, Bhatt TR, Pemberton JO et al. (2004). Pak-1 expression increases with progression of colorectal carcinomas to metastasis. Clin Cancer Res 10: 3448–3456.

    Article  CAS  PubMed  Google Scholar 

  • Clevers H . (2006). Wnt/beta-catenin signaling in development and disease. Cell 127: 469–480.

    Article  CAS  PubMed  Google Scholar 

  • Deacon SW, Beeser A, Fukui JA, Rennefahrt UE, Myers C, Chernoff J et al. (2008). An isoform-selective, small-molecule inhibitor targets the autoregulatory mechanism of p21-activated kinase. Chem Biol 15: 322–331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dummler B, Ohshiro K, Kumar R, Field J . (2009). Pak protein kinases and their role in cancer. Cancer Metastasis Rev 28: 51–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esufali S, Bapat B . (2004). Cross-talk between Rac1 GTPase and dysregulated Wnt signaling pathway leads to cellular redistribution of beta-catenin and TCF/LEF-mediated transcriptional activation. Oncogene 23: 8260–8271.

    Article  CAS  PubMed  Google Scholar 

  • Fang D, Hawke D, Zheng Y, Xia Y, Meisenhelder J, Nika H et al. (2007). Phosphorylation of beta-catenin by AKT promotes beta-catenin transcriptional activity. J Biol Chem 282: 11221–11229.

    Article  CAS  PubMed  Google Scholar 

  • Galisteo ML, Chernoff J, Su YC, Skolnik EY, Schlessinger J . (1996). The adaptor protein Nck links receptor tyrosine kinases with the serine-threonine kinase Pak1. J Biol Chem 271: 20997–21000.

    Article  CAS  PubMed  Google Scholar 

  • Giles RH, van Es JH, Clevers H . (2003). Caught up in a Wnt storm: Wnt signaling in cancer. Biochim Biophys Acta 1653: 1–24.

    CAS  PubMed  Google Scholar 

  • Habas R, Dawid IB, He X . (2003). Coactivation of Rac and Rho by Wnt/frizzled signaling is required for vertebrate gastrulation. Genes Dev 17: 295–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He H, Shulkes A, Baldwin GS . (2008). PAK1 interacts with beta-catenin and is required for the regulation of the beta-catenin signalling pathway by gastrins. Biochim Biophys Acta 1783: 1943–1954.

    Article  CAS  PubMed  Google Scholar 

  • Hendriksen J, Jansen M, Brown CM, van der Velde H, van Ham M, Galjart N et al. (2008). Plasma membrane recruitment of dephosphorylated beta-catenin upon activation of the Wnt pathway. J Cell Sci 121: 1793–1802.

    Article  CAS  PubMed  Google Scholar 

  • Hino S, Tanji C, Nakayama KI, Kikuchi A . (2005). Phosphorylation of beta-catenin by cyclic AMP-dependent protein kinase stabilizes beta-catenin through inhibition of its ubiquitination. Mol Cell Biol 25: 9063–9072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huynh N, Liu KH, Baldwin GS, He H . (2010). P21-activated kinase 1 stimulates colon cancer cell growth and migration/invasion via ERK- and AKT-dependent pathways. Biochim Biophys Acta 1803: 1106–1113.

    Article  CAS  PubMed  Google Scholar 

  • Ilyas M, Tomlinson IP, Rowan A, Pignatelli M, Bodmer WF . (1997). Beta-catenin mutations in cell lines established from human colorectal cancers. Proc Natl Acad Sci USA 94: 10330–10334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobs T, Causeret F, Nishimura YV, Terao M, Norman A, Hoshino M et al. (2007). Localized activation of p21-activated kinase controls neuronal polarity and morphology. J Neurosci 27: 8604–8615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korinek V, Barker N, Morin PJ, van Wichen D, de Weger R, Kinzler KW et al. (1997). Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC−/− colon carcinoma. Science 275: 1784–1787.

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Gururaj AE, Barnes CJ . (2006). p21-activated kinases in cancer. Nat Rev Cancer 6: 459–471.

    Article  CAS  PubMed  Google Scholar 

  • Lee SH, Kunz J, Lin SH, Yu-Lee LY . (2007). 16-kDa prolactin inhibits endothelial cell migration by down-regulating the Ras-Tiam1-Rac1-Pak1 signaling pathway. Cancer Res 67: 11045–11053.

    Article  CAS  PubMed  Google Scholar 

  • Logan CY, Nusse R . (2004). The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 20: 781–810.

    Article  CAS  PubMed  Google Scholar 

  • Lu W, Katz S, Gupta R, Mayer BJ . (1997). Activation of Pak by membrane localization mediated by an SH3 domain from the adaptor protein Nck. Curr Biol 7: 85–94.

    Article  CAS  PubMed  Google Scholar 

  • Lu Z, Hunter T . (2004). Wnt-independent beta-catenin transactivation in tumor development. Cell Cycle 3: 571–573.

    CAS  PubMed  Google Scholar 

  • MacDonald BT, Tamai K, He X . (2009). Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell 17: 9–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manser E, Leung T, Salihuddin H, Zhao ZS, Lim L . (1994). A brain serine/threonine protein kinase activated by Cdc42 and Rac1. Nature 367: 40–46.

    Article  CAS  PubMed  Google Scholar 

  • Molli PR, Li DQ, Murray BW, Rayala SK, Kumar R . (2009). PAK signaling in oncogenesis. Oncogene 28: 2545–2555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moon RT, Kohn AD, De Ferrari GV, Kaykas A . (2004). WNT and beta-catenin signalling: diseases and therapies. Nat Rev Genet 5: 691–701.

    Article  CAS  PubMed  Google Scholar 

  • Morin PJ, Sparks AB, Korinek V, Barker N, Clevers H, Vogelstein B et al. (1997). Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science 275: 1787–1790.

    Article  CAS  PubMed  Google Scholar 

  • Mosimann C, Hausmann G, Basler K . (2009). Beta-catenin hits chromatin: regulation of Wnt target gene activation. Nat Rev Mol Cell Biol 10: 276–286.

    Article  CAS  PubMed  Google Scholar 

  • Nheu T, He H, Hirokawa Y, Walker F, Wood J, Maruta H . (2004). PAK is essential for RAS-induced upregulation of cyclin D1 during the G1 to S transition. Cell Cycle 3: 71–74.

    Article  CAS  PubMed  Google Scholar 

  • Phelps RA, Chidester S, Dehghanizadeh S, Phelps J, Sandoval IT, Rai K et al. (2009). A two-step model for colon adenoma initiation and progression caused by APC loss. Cell 137: 623–634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polakis P . (2000). Wnt signaling and cancer. Genes Dev 14: 1837–1851.

    CAS  PubMed  Google Scholar 

  • Polakis P . (2002). Casein kinase 1: a Wnt'er of disconnect. Curr Biol 12: R499–R501.

    Article  CAS  PubMed  Google Scholar 

  • Rennefahrt UE, Deacon SW, Parker SA, Devarajan K, Beeser A, Chernoff J et al. (2007). Specificity profiling of Pak kinases allows identification of novel phosphorylation sites. J Biol Chem 282: 15667–15678.

    Article  CAS  PubMed  Google Scholar 

  • Rong R, Surace EI, Haipek CA, Gutmann DH, Ye K . (2004). Serine 518 phosphorylation modulates merlin intramolecular association and binding to critical effectors important for NF2 growth suppression. Oncogene 23: 8447–8454.

    Article  CAS  PubMed  Google Scholar 

  • Segditsas S, Sieber OM, Rowan A, Setien F, Neale K, Phillips RK et al. (2008). Promoter hypermethylation leads to decreased APC mRNA expression in familial polyposis and sporadic colorectal tumours, but does not substitute for truncating mutations. Exp Mol Pathol 85: 201–206.

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Khalid S, Rozakis-Adcock M, Fantus IG, Jin T . (2009). P-21-activated protein kinase-1 functions as a linker between insulin and Wnt signaling pathways in the intestine. Oncogene 28: 3132–3144.

    Article  CAS  PubMed  Google Scholar 

  • Tang Y, Chen Z, Ambrose D, Liu J, Gibbs JB, Chernoff J et al. (1997). Kinase-deficient Pak1 mutants inhibit Ras transformation of Rat-1 fibroblasts. Mol Cell Biol 17: 4454–4464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taurin S, Sandbo N, Qin Y, Browning D, Dulin NO . (2006). Phosphorylation of beta-catenin by cyclic AMP-dependent protein kinase. J Biol Chem 281: 9971–9976.

    Article  CAS  PubMed  Google Scholar 

  • Valentini AM, Pirrelli M, Renna L, Armentano R, Caruso ML . (2003). P53 and beta-catenin in colorectal cancer progression. Curr Pharm Des 9: 1932–1936.

    Article  CAS  PubMed  Google Scholar 

  • van de Wetering M, Oving I, Muncan V, Pon Fong MT, Brantjes H, van Leenen D et al. (2003). Specific inhibition of gene expression using a stably integrated, inducible small-interfering-RNA vector. EMBO Rep 4: 609–615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van de Wetering M, Sancho E, Verweij C, de Lau W, Oving I, Hurlstone A et al. (2002). The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell 111: 241–250.

    Article  CAS  PubMed  Google Scholar 

  • Wang RA, Mazumdar A, Vadlamudi RK, Kumar R . (2002). P21-activated kinase-1 phosphorylates and transactivates estrogen receptor-alpha and promotes hyperplasia in mammary epithelium. EMBO J 21: 5437–5447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Fu Y, Gao L, Zhu G, Liang J, Gao C et al. (2010a). Xenopus skip modulates Wnt/beta-catenin signaling and functions in neural crest induction. J Biol Chem 285: 10890–10901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Pedersen E, Basse A, Lefever T, Peyrollier K, Kapoor S et al. (2010b). Rac1 is crucial for Ras-dependent skin tumor formation by controlling Pak1-Mek-Erk hyperactivation and hyperproliferation in vivo. Oncogene 29: 3362–3373.

    Article  CAS  PubMed  Google Scholar 

  • Wells CM, Jones GE . (2010). The emerging importance of group II PAKs. Biochem J 425: 465–473.

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Tu X, Joeng KS, Hilton MJ, Williams DA, Long F . (2008). Rac1 activation controls nuclear localization of beta-catenin during canonical Wnt signaling. Cell 133: 340–353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao GH, Beeser A, Chernoff J, Testa JR . (2002). p21-activated kinase links Rac/Cdc42 signaling to merlin. J Biol Chem 277: 883–886.

    Article  CAS  PubMed  Google Scholar 

  • Xing Y, Clements WK, Le Trong I, Hinds TR, Stenkamp R, Kimelman D et al. (2004). Crystal structure of a beta-catenin/APC complex reveals a critical role for APC phosphorylation in APC function. Mol Cell 15: 523–533.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Drs Ye-Guang Chen, Jonathan Chernoff, Raymond Habas, Alan Hall, Tianhui Hu, Edward Leof, Chaojun Li, Randy Moon, Christof Niehrs, Roel Nusse and Thomas Rudel for reagents. This work was supported by grants to WW from the National Natural Science Foundation of China (No. 30730048, 30921004), the Major Science Programs of China (2006CB943402, 2011CB943803), Tsinghua University Initiative Scientific Research Program (2010THZ0) and Bayer Healthcare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W Wu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, G., Wang, Y., Huang, B. et al. A Rac1/PAK1 cascade controls β-catenin activation in colon cancer cells. Oncogene 31, 1001–1012 (2012). https://doi.org/10.1038/onc.2011.294

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.294

Keywords

This article is cited by

Search

Quick links