Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Eya2 is required to mediate the pro-metastatic functions of Six1 via the induction of TGF-β signaling, epithelial–mesenchymal transition, and cancer stem cell properties

Abstract

Six1 is a critical regulator of embryonic development that requires interaction with the Eya family of proteins (Eya1-4) to activate the transcription of genes involved in neurogenesis, myogenesis and nephrogenesis. Although expression of Six1 and Eya family members is predominantly observed in development, their overexpression is observed in numerous cancers. Importantly, both Six1 and Eya have independently been shown to mediate breast cancer metastasis, but whether they functionally interact during tumor progression has not been explored. Herein, we demonstrate that knockdown of Eya2 in MCF7 mammary carcinoma cells reverses the ability of Six1 to induce transforming growth factor-β signaling, as well as to induce characteristics associated with epithelial–mesenchymal transition and cancer stem cells, suggesting that Six1 is dependent on Eya2 to mediate numerous pro-metastatic characteristics. The importance of the Six1–Eya interaction in human breast cancer is underscored by the finding that high levels of Six1 correlate with shortened time to relapse and metastasis as well as decreased survival only when co-expressed with high levels of Eya2. Overall, these data implicate Eya2 as a necessary co-factor for many of the metastasis promoting functions of Six1, suggesting that targeting the Six1–Eya interaction may inhibit breast cancer progression. As Six1 and Eya2 are not highly expressed in most adult tissues, the Six1–Eya interaction may be a valuable future therapeutic target whose inhibition would be expected to impair breast cancer progression while conferring limited side effects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Abate-Shen C . (2002). Deregulated homeobox gene expression in cancer: cause or consequence? Nat Rev Cancer 2: 777–785.

    CAS  PubMed  Google Scholar 

  • Abdelhak S, Kalatzis V, Heilig R, Compain S, Samson D, Vincent C et al. (1997a). Clustering of mutations responsible for branchio-oto-renal (BOR) syndrome in the eyes absent homologous region (eyaHR) of EYA1. Hum Mol Genet 6: 2247–2255.

    Article  CAS  PubMed  Google Scholar 

  • Abdelhak S, Kalatzis V, Heilig R, Compain S, Samson D, Vincent C et al. (1997b). A human homologue of the Drosophila eyes absent gene underlies branchio- oto-renal (BOR) syndrome and identifies a novel gene family. Nat Genet 15: 157–164.

    Article  CAS  PubMed  Google Scholar 

  • Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF . (2003). Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100: 3983–3988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ando Z, Sato S, Ikeda K, Kawakami K . (2005). Slc12a2 is a direct target of two closely related homeobox proteins, Six1 and Six4. FEBS J 272: 3026–3041.

    Article  CAS  PubMed  Google Scholar 

  • Behbakht K, Qamar L, Aldridge CS, Coletta RD, Davidson SA, Thorburn A et al. (2007). Six1 overexpression in ovarian carcinoma causes resistance to TRAIL-mediated apoptosis and is associated with poor survival. Cancer Res 67: 3036–3042.

    Article  CAS  PubMed  Google Scholar 

  • Cillo C, Faiella A, Cantile M, Boncinelli E . (1999). Homeobox genes and cancer. Exp Cell Res 248: 1–9.

    Article  CAS  PubMed  Google Scholar 

  • Coletta RD, Christensen K, Reichenberger KJ, Lamb J, Micomonaco D, Huang L et al. (2004). The Six1 homeoprotein stimulates tumorigenesis by reactivation of cyclin A1. Proc Natl Acad Sci USA 101: 6478–6483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cook PJ, Ju BG, Telese F, Wang X, Glass CK, Rosenfeld MG . (2009). Tyrosine dephosphorylation of H2AX modulates apoptosis and survival decisions. Nature 458: 591–596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Embry AC, Glick JL, Linder ME, Casey PJ . (2004). Reciprocal signaling between the transcriptional co-factor Eya2 and specific members of the Galphai family. Mol Pharmacol 66: 1325–1331.

    Article  CAS  PubMed  Google Scholar 

  • Fan X, Brass LF, Poncz M, Spitz F, Maire P, Manning DR . (2000). The alpha subunits of Gz and Gi interact with the eyes absent transcription cofactor Eya2, preventing its interaction with the six class of homeodomain-containing proteins. J Biol Chem 275: 32129–32134.

    Article  CAS  PubMed  Google Scholar 

  • Ford HL . (1998). Homeobox genes: a link between development, cell cycle, and cancer? Cell Biol Int 22: 397–400.

    Article  CAS  PubMed  Google Scholar 

  • Ford HL, Kabingu EN, Bump EA, Mutter GL, Pardee AB . (1998). Abrogation of the G2 cell cycle checkpoint associated with overexpression of HSIX1: a possible mechanism of breast carcinogenesis. Proc Natl Acad Sci USA 95: 12608–12613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ford HL, Landesman-Bollag E, Dacwag CS, Stukenberg PT, Pardee AB, Seldin DC . (2000). Cell cycle-regulated phosphorylation of the human SIX1 homeodomain protein. J Biol Chem 275: 22245–22254.

    Article  CAS  PubMed  Google Scholar 

  • Harrell JC, Dye WW, Allred DC, Jedlicka P, Spoelstra NS, Sartorius CA et al. (2006). Estrogen receptor positive breast cancer metastasis: altered hormonal sensitivity and tumor aggressiveness in lymphatic vessels and lymph nodes. Cancer Res 66: 9308–9315.

    Article  CAS  PubMed  Google Scholar 

  • Jemc J, Rebay I . (2007). Identification of transcriptional targets of the dual-function transcription factor/phosphatase eyes absent. Dev Biol 310: 416–429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kochhar A, Orten DJ, Sorensen JL, Fischer SM, Cremers CW, Kimberling WJ et al. (2008). SIX1 mutation screening in 247 branchio-oto-renal syndrome families: a recurrent missense mutation associated with BOR. Hum Mutat 29: 565.

    Article  PubMed  Google Scholar 

  • Korinek V, Barker N, Morin PJ, van Wichen D, de Weger R, Kinzler KW et al. (1997). Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC−/− colon carcinoma. Science 275: 1784–1787.

    Article  CAS  PubMed  Google Scholar 

  • Krishnan N, Jeong DG, Jung SK, Ryu SE, Xiao A, Allis CD et al. (2009). Dephosphorylation of the C-terminal tyrosyl residue of the DNA damage-related histone H2A.X is mediated by the protein phosphatase eyes absent. J Biol Chem 284: 16066–16070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laclef C, Hamard G, Demignon J, Souil E, Houbron C, Maire P . (2003a). Altered myogenesis in Six1-deficient mice. Development 130: 2239–2252.

    Article  CAS  PubMed  Google Scholar 

  • Laclef C, Souil E, Demignon J, Maire P . (2003b). Thymus, kidney and craniofacial abnormalities in Six1 deficient mice. Mech Dev 120: 669–679.

    Article  CAS  PubMed  Google Scholar 

  • Li CM, Guo M, Borczuk A, Powell CA, Wei M, Thaker HM et al. (2002). Gene expression in Wilms' tumor mimics the earliest committed stage in the metanephric mesenchymal-epithelial transition. Am J Pathol 160: 2181–2190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Oghi KA, Zhang J, Krones A, Bush KT, Glass CK et al. (2003). Eya protein phosphatase activity regulates Six1-Dach-Eya transcriptional effects in mammalian organogenesis. Nature 426: 247–254.

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD . (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods 25: 402–408.

    Article  CAS  PubMed  Google Scholar 

  • McCoy EL, Iwanaga R, Jedlicka P, Abbey NS, Chodosh LA, Heichman KA et al. (2009). Six1 expands the mouse mammary epithelial stem/progenitor cell pool and induces mammary tumors that undergo epithelial-mesenchymal transition. J Clin Invest 119: 2663–2677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Micalizzi DS, Christensen KL, Jedlicka P, Coletta RD, Baron AE, Harrell JC et al. (2009). The Six1 homeoprotein induces human mammary carcinoma cells to undergo epithelial-mesenchymal transition and metastasis in mice through increasing TGF-beta signaling. J Clin Invest 119: 2678–2690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Micalizzi DS, Wang CA, Farabaugh SM, Schiemann WP, Ford H . (2010). Homeoprotein Six1 increases TGF-[beta] type I receptor and converts TGF-[beta] signaling from suppressive to supportive for tumor growth. Cancer Res 70: 10371–10380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller SJ, Lan ZD, Hardiman A, Wu J, Kordich JJ, Patmore DM et al. (2010). Inhibition of Eyes absent homolog 4 expression induces malignant peripheral nerve sheath tumor necrosis. Oncogene 29: 368–379.

    Article  CAS  PubMed  Google Scholar 

  • Ng KT, Man K, Sun CK, Lee TK, Poon RT, Lo CM et al. (2006). Clinicopathological significance of homeoprotein Six1 in hepatocellular carcinoma. Br J Cancer 95: 1050–1055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohto H, Kamada S, Tago K, Tominaga SI, Ozaki H, Sato S et al. (1999). Cooperation of Six and Eya in activation of their target genes through nuclear translocation of Eya. Mol Cell Biol 19: 6815–6824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okabe Y, Sano T, Nagata S . (2009). Regulation of the innate immune response by threonine-phosphatase of Eyes absent. Nature 460: 520–524.

    Article  CAS  PubMed  Google Scholar 

  • Orten DJ, Fischer SM, Sorensen JL, Radhakrishna U, Cremers CW, Marres HA et al. (2008). Branchio-oto-renal syndrome (BOR): novel mutations in the EYA1 gene, and a review of the mutational genetics of BOR. Hum Mutat 29: 537–544.

    Article  CAS  PubMed  Google Scholar 

  • Osborn NK, Zou H, Molina JR, Lesche R, Lewin J, Lofton-Day C et al. (2006). Aberrant methylation of the eyes absent 4 gene in ulcerative colitis-associated dysplasia. Clin Gastroenterol Hepatol 4: 212–218.

    Article  CAS  PubMed  Google Scholar 

  • Ouyang G, Wang Z, Fang X, Liu J, Yang CJ . (2010). Molecular signaling of the epithelial to mesenchymal transition in generating and maintaining cancer stem cells. Cell Mol Life Sci 67: 2605–2618.

    Article  CAS  PubMed  Google Scholar 

  • Pandey RN, Rani R, Yeo EJ, Spencer M, Hu S, Lang RA et al. (2010). The Eyes absent phosphatase-transactivator proteins promote proliferation, transformation, migration, and invasion of tumor cells. Oncogene 29: 3715–3722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patrick AN, Schiemann BJ, Yang K, Zhao R, Ford HL . (2009). Biochemical and functional characterization of six SIX1 Branchio-oto-renal syndrome mutations. J Biol Chem 284: 20781–20790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reichenberger KJ, Coletta RD, Schulte AP, Varella-Garcia M, Ford HL . (2005). Gene amplification is a mechanism of Six1 overexpression in breast cancer. Cancer Res 65: 2668–2675.

    Article  CAS  PubMed  Google Scholar 

  • Ruf RG, Xu PX, Silvius D, Otto EA, Beekmann F, Muerb UT et al. (2004). SIX1 mutations cause branchio-oto-renal syndrome by disruption of EYA1-SIX1-DNA complexes. Proc Natl Acad Sci USA 101: 8090–8095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samuel S, Naora H . (2005). Homeobox gene expression in cancer: insights from developmental regulation and deregulation. Eur J Cancer 41: 2428–2437.

    Article  CAS  PubMed  Google Scholar 

  • Schonberger J, Wang L, Shin JT, Kim SD, Depreux FF, Zhu H et al. (2005). Mutation in the transcriptional coactivator EYA4 causes dilated cardiomyopathy and sensorineural hearing loss. Nat Genet 37: 418–422.

    Article  PubMed  Google Scholar 

  • Shtutman M, Levina E, Ohouo P, Baig M, Roninson IB . (2006). Cell adhesion molecule L1 disrupts E-cadherin-containing adherens junctions and increases scattering and motility of MCF7 breast carcinoma cells. Cancer Res 66: 11370–11380.

    Article  CAS  PubMed  Google Scholar 

  • Taylor MA, Parvani JG, Schiemann WP . (2010). The pathophysiology of epithelial-mesenchymal transition induced by transforming growth factor-beta in normal and malignant mammary epithelial cells. J Mammary Gland Biol Neoplasia 15: 169–190.

    Article  PubMed  PubMed Central  Google Scholar 

  • van ‘t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M et al. (2002). Gene expression profiling predicts clinical outcome of breast cancer. Nature 415: 530–536.

    Article  PubMed  Google Scholar 

  • Vincent C, Kalatzis V, Abdelhak S, Chaib H, Compain S, Helias J et al. (1997). BOR and BO syndromes are allelic defects of EYA1. Eur J Hum Genet 5: 242–246.

    CAS  PubMed  Google Scholar 

  • Wang Y, Klijn JG, Zhang Y, Sieuwerts AM, Look MP, Yang F et al. (2005). Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365: 671–679.

    Article  CAS  PubMed  Google Scholar 

  • Wayne S, Robertson NG, DeClau F, Chen N, Verhoeven K, Prasad S et al. (2001). Mutations in the transcriptional activator EYA4 cause late-onset deafness at the DFNA10 locus. Hum Mol Genet 10: 195–200.

    Article  CAS  PubMed  Google Scholar 

  • Wrana JL, Attisano L, Carcamo J, Zentella A, Doody J, Laiho M et al. (1992). TGF beta signals through a heteromeric protein kinase receptor complex. Cell 71: 1003–1014.

    Article  CAS  PubMed  Google Scholar 

  • Xiong W, Dabbouseh NM, Rebay I . (2009). Interactions with the abelson tyrosine kinase reveal compartmentalization of eyes absent function between nucleus and cytoplasm. Dev Cell 16: 271–279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu PX, Adams J, Peters H, Brown MC, Heaney S, Maas R . (1999). Eya1-deficient mice lack ears and kidneys and show abnormal apoptosis of organ primordia. Nat Genet 23: 113–117.

    Article  CAS  PubMed  Google Scholar 

  • Xu PX, Zheng W, Huang L, Maire P, Laclef C, Silvius D . (2003). Six1 is required for the early organogenesis of mammalian kidney. Development 130: 3085–3094.

    Article  CAS  PubMed  Google Scholar 

  • Xu PX, Zheng W, Laclef C, Maire P, Maas RL, Peters H et al. (2002). Eya1 is required for the morphogenesis of mammalian thymus, parathyroid and thyroid. Development 129: 3033–3044.

    CAS  PubMed  Google Scholar 

  • Yu Y, Davicioni E, Triche TJ, Merlino G . (2006). The homeoprotein six1 transcriptionally activates multiple protumorigenic genes but requires ezrin to promote metastasis. Cancer Res 66: 1982–1989.

    Article  CAS  PubMed  Google Scholar 

  • Yu Y, Khan J, Khanna C, Helman L, Meltzer PS, Merlino G . (2004). Expression profiling identifies the cytoskeletal organizer ezrin and the developmental homeoprotein Six-1 as key metastatic regulators. Nat Med 10: 175–181.

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Yang N, Huang J, Buckanovich RJ, Liang S, Barchetti A et al. (2005). Transcriptional coactivator Drosophila eyes absent homologue 2 is up-regulated in epithelial ovarian cancer and promotes tumor growth. Cancer Res 65: 925–932.

    CAS  PubMed  Google Scholar 

  • Zhang Y, Knosp BM, Maconochie M, Friedman RA, Smith RJ . (2004). A comparative study of Eya1 and Eya4 protein function and its implication in branchio-oto-renal syndrome and DFNA10. J Assoc Res Otolaryngol 5: 295–304.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng XH, Liang PH, Guo JX, Zheng YR, Han J, Yu LL et al. (2010). Expression and clinical implications of homeobox gene Six1 in cervical cancer cell lines and cervical epithelial tissues. Int J Gynecol Cancer 20: 1587–1592.

    Article  PubMed  Google Scholar 

  • Zou H, Osborn NK, Harrington JJ, Klatt KK, Molina JR, Burgart LJ et al. (2005). Frequent methylation of eyes absent 4 gene in Barrett's esophagus and esophageal adenocarcinoma. Cancer Epidemiol Biomarkers Prev 14: 830–834.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by grants from the National Cancer Institute (2RO1-CA095277) and the American Cancer Society (#RSG-07-183-01-DDC) to HLF, and the Department of Defense Breast Cancer Synergistic Idea Award (BC084105) to HLF and RZ. SMF and DSM were funded by predoctoral fellowships from the Department of Defense Breast Cancer Research Program (W81XWH-08-1-0332 and W81XWH-06-1-0757, respectively). We would like to thank Alana Welm for training in microarray datamining techniques, database sharing and helpful datamining discussions, and Katherine Martin, of Bioarray Therapeutics, for data analysis of the Wang data set.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H L Ford.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farabaugh, S., Micalizzi, D., Jedlicka, P. et al. Eya2 is required to mediate the pro-metastatic functions of Six1 via the induction of TGF-β signaling, epithelial–mesenchymal transition, and cancer stem cell properties. Oncogene 31, 552–562 (2012). https://doi.org/10.1038/onc.2011.259

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.259

Keywords

This article is cited by

Search

Quick links