Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Breast tumor progression induced by loss of BTG2 expression is inhibited by targeted therapy with the ErbB/HER inhibitor lapatinib

Abstract

The B-cell translocation gene-2 (BTG2), a p53-inducible gene, is suppressed in mammary epithelial cells during gestation and lactation. In human breast cancer, decreased BTG2 expression correlates with high tumor grade and size, p53 status, blood and lymph vessel invasion, local and metastatic recurrence and decrease in overall survival, suggesting that suppression of BTG2 has a critical role in disease progression. To analyze the role of BTG2 in breast cancer progression, BTG2 expression was knocked down in mammary epithelial cells. Suppression of BTG2 enhances the motility of cells in vitro and tumor growth and metastasis in vivo. The effects of BTG2 knockdown are mediated through stabilization of the human epidermal growth factor receptor (HER) ligands neuregulin and epiregulin and activation of the HER2 and HER3 receptors, leading to elevated AKT phosphorylation. Suppression of HER activation using the tyrosine kinase inhibitor lapatinib abrogates the effects of BTG2 knockdown, including the increased cell migration observed in vitro and the enhancement of tumorigenesis and metastasis in vivo. These results link BTG2-dependent effects on tumor progression to ErbB receptor signaling, and raise the possibility that targeted inhibition of this pathway may be relevant in the treatment of breast cancers that have reduced BTG2 expression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Bild AH, Yao G, Chang JT, Wang Q, Potti A, Chasse D et al. (2006). Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature 439: 353–357.

    Article  CAS  Google Scholar 

  • Boersma BJ, Reimers M, Yi M, Ludwig JA, Luke BT, Stephens RM et al. (2008). A stromal gene signature associated with inflammatory breast cancer. Int J Cancer 122: 1324–1332.

    Article  CAS  Google Scholar 

  • Boiko AD, Porteous S, Razorenova OV, Krivokrysenko VI, Williams BR, Gudkov AV . (2006). A systematic search for downstream mediators of tumor suppressor function of p53 reveals a major role of BTG2 in suppression of Ras-induced transformation. Genes Dev 20: 236–252.

    Article  CAS  Google Scholar 

  • Calzolari F, Appolloni I, Tutucci E, Caviglia S, Terrile M, Corte G et al. (2008). Tumor progression and oncogene addiction in a PDGF-B-induced model of gliomagenesis. Neoplasia 10: 1373–1382, following 1382.

    Article  CAS  Google Scholar 

  • Cortes U, Moyret-Lalle C, Falette N, Duriez C, Ghissassi FE, Barnas C et al. (2000). BTG gene expression in the p53-dependent and -independent cellular response to DNA damage. Mol Carcinog 27: 57–64.

    Article  CAS  Google Scholar 

  • Debnath J, Muthuswamy SK, Brugge JS . (2003). Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods 30: 256–268.

    Article  CAS  Google Scholar 

  • Desmedt C, Piette F, Loi S, Wang Y, Lallemand F, Haibe-Kains B et al. (2007). Strong time dependence of the 76-gene prognostic signature for node-negative breast cancer patients in the TRANSBIG multicenter independent validation series. Clin Cancer Res 13: 3207–3214.

    Article  CAS  Google Scholar 

  • Esteva FJ, Yu D, Hung MC, Hortobagyi GN . (2010). Molecular predictors of response to trastuzumab and lapatinib in breast cancer. Nat Rev Clin Oncol 7: 98–107.

    Article  CAS  Google Scholar 

  • Farioli-Vecchioli S, Tanori M, Micheli L, Mancuso M, Leonardi L, Saran A et al. (2007). Inhibition of medulloblastoma tumorigenesis by the antiproliferative and pro-differentiative gene PC3. FASEB J 21: 2215–2225.

    Article  CAS  Google Scholar 

  • Ficazzola MA, Fraiman M, Gitlin J, Woo K, Melamed J, Rubin MA et al. (2001). Antiproliferative B cell translocation gene 2 protein is down-regulated post-transcriptionally as an early event in prostate carcinogenesis. Carcinogenesis 22: 1271–1279.

    Article  CAS  Google Scholar 

  • Finak G, Bertos N, Pepin F, Sadekova S, Souleimanova M, Zhao H et al. (2008). Stromal gene expression predicts clinical outcome in breast cancer. Nat Med 14: 518–527.

    Article  CAS  Google Scholar 

  • Geyer CE, Forster J, Lindquist D, Chan S, Romieu CG, Pienkowski T et al. (2006). Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N Engl J Med 355: 2733–2743.

    Article  CAS  Google Scholar 

  • Gomez HL, Doval DC, Chavez MA, Ang PC, Aziz Z, Nag S et al. (2008). Efficacy and safety of lapatinib as first-line therapy for ErbB2-amplified locally advanced or metastatic breast cancer. J Clin Oncol 26: 2999–3005.

    Article  CAS  Google Scholar 

  • Gril B, Palmieri D, Bronder JL, Herring JM, Vega-Valle E, Feigenbaum L et al. (2008). Effect of lapatinib on the outgrowth of metastatic breast cancer cells to the brain. J Natl Cancer Inst 100: 1092–1103.

    Article  CAS  Google Scholar 

  • Guardavaccaro D, Corrente G, Covone F, Micheli L, D‘Agnano I, Starace G et al. (2000). Arrest of G(1)-S progression by the p53-inducible gene PC3 is Rb dependent and relies on the inhibition of cyclin D1 transcription. Mol Cell Biol 20: 1797–1815.

    Article  CAS  Google Scholar 

  • Ha TU, Segev DL, Barbie D, Masiakos PT, Tran TT, Dombkowski D et al. (2000). Mullerian inhibiting substance inhibits ovarian cell growth through an Rb-independent mechanism. J Biol Chem 275: 37101–37109.

    Article  CAS  Google Scholar 

  • Hayashida T, Takahashi F, Chiba N, Brachtel E, Takahashi M, Godin-Heymann N et al. (2010). HOXB9, a gene overexpressed in breast cancer, promotes tumorigenicity and lung metastasis. Proc Natl Acad Sci USA 107: 1100–1105.

    Article  CAS  Google Scholar 

  • Hiscox S, Jiang WG, Obermeier K, Taylor K, Morgan L, Burmi R et al. (2006). Tamoxifen resistance in MCF7 cells promotes EMT-like behaviour and involves modulation of beta-catenin phosphorylation. Int J Cancer 118: 290–301.

    Article  CAS  Google Scholar 

  • Hong JW, Ryu MS, Lim IK . (2005). Phosphorylation of serine 147 of tis21/BTG2/pc3 by p-Erk1/2 induces Pin-1 binding in cytoplasm and cell death. J Biol Chem 280: 21256–21263.

    Article  CAS  Google Scholar 

  • Hsieh AC, Moasser MM . (2007). Targeting HER proteins in cancer therapy and the role of the non-target HER3. Br J Cancer 97: 453–457.

    Article  CAS  Google Scholar 

  • Huang E, Cheng SH, Dressman H, Pittman J, Tsou MH, Horng CF et al. (2003). Gene expression predictors of breast cancer outcomes. Lancet 361: 1590–1596.

    Article  CAS  Google Scholar 

  • Hynes NE, Horsch K, Olayioye MA, Badache A . (2001). The ErbB receptor tyrosine family as signal integrators. Endocr Relat Cancer 8: 151–159.

    Article  CAS  Google Scholar 

  • Johnston S, Pippen Jr J, Pivot X, Lichinitser M, Sadeghi S, Dieras V et al. (2009). Lapatinib combined with letrozole versus letrozole and placebo as first-line therapy for postmenopausal hormone receptor-positive metastatic breast cancer. J Clin Oncol 27: 5538–5546.

    Article  CAS  Google Scholar 

  • Johnston S, Trudeau M, Kaufman B, Boussen H, Blackwell K, LoRusso P et al. (2008). Phase II study of predictive biomarker profiles for response targeting human epidermal growth factor receptor 2 (HER-2) in advanced inflammatory breast cancer with lapatinib monotherapy. J Clin Oncol 26: 1066–1072.

    Article  CAS  Google Scholar 

  • Julka PK, Chacko RT, Nag S, Parshad R, Nair A, Oh DS et al. (2008). A phase II study of sequential neoadjuvant gemcitabine plus doxorubicin followed by gemcitabine plus cisplatin in patients with operable breast cancer: prediction of response using molecular profiling. Br J Cancer 98: 1327–1335.

    Article  CAS  Google Scholar 

  • Kawakubo H, Brachtel E, Hayashida T, Yeo G, Kish J, Muzikansky A et al. (2006). Loss of B-cell translocation gene-2 in estrogen receptor-positive breast carcinoma is associated with tumor grade and overexpression of cyclin d1 protein. Cancer Res 66: 7075–7082.

    Article  CAS  Google Scholar 

  • Kawakubo H, Carey JL, Brachtel E, Gupta V, Green JE, Walden PD et al. (2004). Expression of the NF-kappaB-responsive gene BTG2 is aberrantly regulated in breast cancer. Oncogene 23: 8310–8319.

    Article  CAS  Google Scholar 

  • Kedrin D, Wyckoff J, Boimel PJ, Coniglio SJ, Hynes NE, Arteaga CL et al. (2009). ERBB1 and ERBB2 have distinct functions in tumor cell invasion and intravasation. Clin Cancer Res 15: 3733–3739.

    Article  CAS  Google Scholar 

  • Konecny GE, Venkatesan N, Yang G, Dering J, Ginther C, Finn R et al. (2008). Activity of lapatinib a novel HER2 and EGFR dual kinase inhibitor in human endometrial cancer cells. Br J Cancer 98: 1076–1084.

    Article  CAS  Google Scholar 

  • Leary AF, Drury S, Detre S, Pancholi S, Lykkesfeldt AE, Martin LA et al. (2010). Lapatinib restores hormone sensitivity with differential effects on estrogen receptor signaling in cell models of human epidermal growth factor receptor 2-negative breast cancer with acquired endocrine resistance. Clin Cancer Res 16: 1486–1497.

    Article  CAS  Google Scholar 

  • Lim IK, Lee MS, Lee SH, Kim NK, Jou I, Seo JS et al. (1995). Differential expression of TIS21 and TIS1 genes in the various organs of Balb/c mice, thymic carcinoma tissues and human cancer cell lines. J Cancer Res Clin Oncol 121: 279–284.

    Article  CAS  Google Scholar 

  • Lim IK, Lee MS, Ryu MS, Park TJ, Fujiki H, Eguchi H et al. (1998). Induction of growth inhibition of 293 cells by downregulation of the cyclin E and cyclin-dependent kinase 4 proteins due to overexpression of TIS21. Mol Carcinog 23: 25–35.

    Article  CAS  Google Scholar 

  • Lo HW, Hsu SC, Xia W, Cao X, Shih JY, Wei Y et al. (2007). Epidermal growth factor receptor cooperates with signal transducer and activator of transcription 3 to induce epithelial-mesenchymal transition in cancer cells via up-regulation of TWIST gene expression. Cancer Res 67: 9066–9076.

    Article  CAS  Google Scholar 

  • Loi S, Haibe-Kains B, Desmedt C, Lallemand F, Tutt AM, Gillet C et al. (2007). Definition of clinically distinct molecular subtypes in estrogen receptor-positive breast carcinomas through genomic grade. J Clin Oncol 25: 1239–1246.

    Article  CAS  Google Scholar 

  • Loi S, Haibe-Kains B, Desmedt C, Wirapati P, Lallemand F, Tutt AM et al. (2008). Predicting prognosis using molecular profiling in estrogen receptor-positive breast cancer treated with tamoxifen. BMC Genomics 9: 239.

    Article  Google Scholar 

  • Ma XJ, Wang Z, Ryan PD, Isakoff SJ, Barmettler A, Fuller A et al. (2004). A two-gene expression ratio predicts clinical outcome in breast cancer patients treated with tamoxifen. Cancer Cell 5: 607–616.

    Article  CAS  Google Scholar 

  • Mauxion F, Chen CY, Seraphin B, Shyu AB . (2009). BTG/TOB factors impact deadenylases. Trends Biochem Sci 34: 640–647.

    Article  CAS  Google Scholar 

  • Mauxion F, Faux C, Seraphin B . (2008). The BTG2 protein is a general activator of mRNA deadenylation. EMBO J 27: 1039–1048.

    Article  CAS  Google Scholar 

  • Melamed J, Kernizan S, Walden PD . (2002). Expression of B-cell translocation gene 2 protein in normal human tissues. Tissue Cell 34: 28–32.

    Article  CAS  Google Scholar 

  • Minn AJ, Gupta GP, Siegel PM, Bos PD, Shu W, Giri DD et al. (2005). Genes that mediate breast cancer metastasis to lung. Nature 436: 518–524.

    Article  CAS  Google Scholar 

  • Moffat J, Grueneberg DA, Yang X, Kim SY, Kloepfer AM, Hinkle G et al. (2006). A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high-content screen. Cell 124: 1283–1298.

    CAS  Google Scholar 

  • Park S, Lee YJ, Lee HJ, Seki T, Hong KH, Park J et al. (2004). B-cell translocation gene 2 (Btg2) regulates vertebral patterning by modulating bone morphogenetic protein/smad signaling. Mol Cell Biol 24: 10256–10262.

    Article  CAS  Google Scholar 

  • Pawitan Y, Bjohle J, Amler L, Borg AL, Egyhazi S, Hall P et al. (2005). Gene expression profiling spares early breast cancer patients from adjuvant therapy: derived and validated in two population-based cohorts. Breast Cancer Res 7: R953–R964.

    Article  CAS  Google Scholar 

  • Prevot D, Voeltzel T, Birot AM, Morel AP, Rostan MC, Magaud JP et al. (2000). The leukemia-associated protein Btg1 and the p53-regulated protein Btg2 interact with the homeoprotein Hoxb9 and enhance its transcriptional activation. J Biol Chem 275: 147–153.

    Article  CAS  Google Scholar 

  • Saal LH, Johansson P, Holm K, Gruvberger-Saal SK, She QB, Maurer M et al. (2007). Poor prognosis in carcinoma is associated with a gene expression signature of aberrant PTEN tumor suppressor pathway activity. Proc Natl Acad Sci USA 104: 7564–7569.

    Article  CAS  Google Scholar 

  • Sabbah M, Emami S, Redeuilh G, Julien S, Prevost G, Zimber A et al. (2008). Molecular signature and therapeutic perspective of the epithelial-to-mesenchymal transitions in epithelial cancers. Drug Resist Updat 11: 123–151.

    Article  CAS  Google Scholar 

  • Schmidt M, Bohm D, von Torne C, Steiner E, Puhl A, Pilch H et al. (2008). The humoral immune system has a key prognostic impact in node-negative breast cancer. Cancer Res 68: 5405–5413.

    Article  CAS  Google Scholar 

  • Shelly M, Pinkas-Kramarski R, Guarino BC, Waterman H, Wang LM, Lyass L et al. (1998). Epiregulin is a potent pan-ErbB ligand that preferentially activates heterodimeric receptor complexes. J Biol Chem 273: 10496–10505.

    Article  CAS  Google Scholar 

  • Sithanandam G, Fornwald LW, Fields J, Anderson LM . (2005). Inactivation of ErbB3 by siRNA promotes apoptosis and attenuates growth and invasiveness of human lung adenocarcinoma cell line A549. Oncogene 24: 1847–1859.

    Article  CAS  Google Scholar 

  • Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A et al. (2003). Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA 100: 8418–8423.

    Article  CAS  Google Scholar 

  • Sotiriou C, Neo SY, McShane LM, Korn EL, Long PM, Jazaeri A et al. (2003). Breast cancer classification and prognosis based on gene expression profiles from a population-based study. Proc Natl Acad Sci USA 100: 10393–10398.

    Article  CAS  Google Scholar 

  • Sotiriou C, Wirapati P, Loi S, Harris A, Fox S, Smeds J et al. (2006). Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. J Natl Cancer Inst 98: 262–272.

    Article  CAS  Google Scholar 

  • Struckmann K, Schraml P, Simon R, Elmenhorst K, Mirlacher M, Kononen J et al. (2004). Impaired expression of the cell cycle regulator BTG2 is common in clear cell renal cell carcinoma. Cancer Res 64: 1632–1638.

    Article  CAS  Google Scholar 

  • Tripathy D, Benz CC . (1992). Activated oncogenes and putative tumor suppressor genes involved in human breast cancers. Cancer Treat Res 63: 15–60.

    Article  CAS  Google Scholar 

  • van ‘t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M et al. (2002). Gene expression profiling predicts clinical outcome of breast cancer. Nature 415: 530–536.

    Article  Google Scholar 

  • van de Vijver MJ, He YD, van‘t Veer LJ, Dai H, Hart AA, Voskuil DW et al. (2002). A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347: 1999–2009.

    Article  CAS  Google Scholar 

  • Wang Y, Klijn JG, Zhang Y, Sieuwerts AM, Look MP, Yang F et al. (2005). Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365: 671–679.

    Article  CAS  Google Scholar 

  • Winkler GS . (2009). The mammalian anti-proliferative BTG/Tob protein family. J Cell Physiol 222: 66–72.

    Article  Google Scholar 

  • Xue C, Liang F, Mahmood R, Vuolo M, Wyckoff J, Qian H et al. (2006). ErbB3-dependent motility and intravasation in breast cancer metastasis. Cancer Res 66: 1418–1426.

    Article  CAS  Google Scholar 

  • Yu K, Ganesan K, Miller LD, Tan P . (2006). A modular analysis of breast cancer reveals a novel low-grade molecular signature in estrogen receptor-positive tumors. Clin Cancer Res 12: 3288–3296.

    Article  CAS  Google Scholar 

  • Zhang D, Sliwkowski MX, Mark M, Frantz G, Akita R, Sun Y et al. (1997). Neuregulin-3 (NRG3): a novel neural tissue-enriched protein that binds and activates ErbB4. Proc Natl Acad Sci USA 94: 9562–9567.

    Article  CAS  Google Scholar 

  • Zhao H, Langerod A, Ji Y, Nowels KW, Nesland JM, Tibshirani R et al. (2004). Different gene expression patterns in invasive lobular and ductal carcinomas of the breast. Mol Biol Cell 15: 2523–2536.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Drs Isselbacher, Haber, Engelman and Zou for critically reading the paper. This work was supported by the NIH/NCI Grant CA89138 (to SM), the Susan G Komen for the Cure Grants PDF0600282 and KG090412 (to SM) and ESSCO breast cancer research grant (to SM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Maheswaran.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takahashi, F., Chiba, N., Tajima, K. et al. Breast tumor progression induced by loss of BTG2 expression is inhibited by targeted therapy with the ErbB/HER inhibitor lapatinib. Oncogene 30, 3084–3095 (2011). https://doi.org/10.1038/onc.2011.24

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.24

Keywords

This article is cited by

Search

Quick links