Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

The autophagy conundrum in cancer: influence of tumorigenic metabolic reprogramming

Abstract

Tumorigenesis is often accompanied by metabolic changes that favor rapid energy production and increased biosynthetic capabilities. These metabolic adaptations promote the survival and proliferation of tumor cells, and in conjunction with the hypoxic and metabolically challenged tumor microenvironment, influence autophagic activity. Autophagy is a catabolic process that allows cellular macromolecules to be broken down and re-utilized as metabolic precursors. Stimulation of autophagy promotes the survival of tumor cells under stressful metabolic and environmental conditions, and counters the potentially deleterious effects of mitochondrial dysfunction and the ROS that these organelles generate. However, inhibition of autophagy has also been reported to fuel tumorigenesis. In spite of the advances in our understanding of the relationship between autophagy and tumorigenesis, it remains unclear whether the therapeutic approaches targeting autophagy should aim to increase or decrease autophagic flux in tumor tissues in human patients. Here, we review how metabolic reprogramming influences autophagic activity in tumors, and discuss how inhibition of autophagy might be exploited to target tumor cells that show altered metabolism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Abraham RT, Eng CH . (2008). Mammalian target of rapamycin as a therapeutic target in oncology. Expert Opin Ther Targets 12: 209–222.

    CAS  PubMed  Google Scholar 

  • Aita VM, Liang XH, Murty VV, Pincus DL, Yu W, Cayanis E et al. (1999). Cloning and genomic organization of beclin 1, a candidate tumor suppressor gene on chromosome 17q21. Genomics 59: 59–65.

    Article  CAS  PubMed  Google Scholar 

  • Alexander A, Cai SL, Kim J, Nanez A, Sahin M, MacLean KH et al. (2010). ATM signals to TSC2 in the cytoplasm to regulate mTORC1 in response to ROS. Proc Natl Acad Sci USA 107: 4153–4158.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Amaravadi RK, Lippincott-Schwartz J, Yin XM, Weiss WA, Takebe N, Timmer W et al. (2011). Principles and current strategies for targeting autophagy for cancer treatment. Clin Cancer Res 17: 654–666.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arico S, Petiot A, Bauvy C, Dubbelhuis PF, Meijer AJ, Codogno P et al. (2001). The tumor suppressor PTEN positively regulates macroautophagy by inhibiting the phosphatidylinositol 3-kinase/protein kinase B pathway. J Biol Chem 276: 35243–35246.

    CAS  PubMed  Google Scholar 

  • Balakumaran BS, Porrello A, Hsu DS, Glover W, Foye A, Leung JY et al. (2009). MYC activity mitigates response to rapamycin in prostate cancer through eukaryotic initiation factor 4E-binding protein 1-mediated inhibition of autophagy. Cancer Res 69: 7803–7810.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bellot G, Garcia-Medina R, Gounon P, Chiche J, Roux D, Pouyssegur J et al. (2009). Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol Cell Biol 29: 2570–2581.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bensaad K, Cheung EC, Vousden KH . (2009). Modulation of intracellular ROS levels by TIGAR controls autophagy. EMBO J 28: 3015–3026.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bensaad K, Tsuruta A, Selak MA, Vidal MN, Nakano K, Bartrons R et al. (2006). TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 126: 107–120.

    CAS  PubMed  Google Scholar 

  • Berry DL, Baehrecke EH . (2007). Growth arrest and autophagy are required for salivary gland cell degradation in Drosophila. Cell 131: 1137–1148.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brest P, Corcelle EA, Cesaro A, Chargui A, Belaid A, Klionsky DJ et al. (2010). Autophagy and Crohn's disease: at the crossroads of infection, inflammation, immunity, and cancer. Curr Mol Med 10: 486–502.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brugarolas J, Lei K, Hurley RL, Manning BD, Reiling JH, Hafen E et al. (2004). Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Genes Dev 18: 2893–2904.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen N, Debnath J . (2010). Autophagy and tumorigenesis. FEBS Lett 584: 1427–1435.

    CAS  PubMed  Google Scholar 

  • Chen Y, Azad MB, Gibson SB . (2009). Superoxide is the major reactive oxygen species regulating autophagy. Cell Death Differ 16: 1040–1052.

    CAS  PubMed  Google Scholar 

  • Colell A, Ricci JE, Tait S, Milasta S, Maurer U, Bouchier-Hayes L et al. (2007). GAPDH and autophagy preserve survival after apoptotic cytochrome c release in the absence of caspase activation. Cell 129: 983–997.

    CAS  PubMed  Google Scholar 

  • Dang CV, Le A, Gao P . (2009). MYC-induced cancer cell energy metabolism and therapeutic opportunities. Clin Cancer Res 15: 6479–6483.

    CAS  PubMed  PubMed Central  Google Scholar 

  • DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB . (2008). The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 7: 11–20.

    CAS  PubMed  Google Scholar 

  • DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M, Wehrli S et al. (2007). Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci USA 104: 19345–19350.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Degenhardt K, Mathew R, Beaudoin B, Bray K, Anderson D, Chen G et al. (2006). Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell 10: 51–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Denton D, Shravage B, Simin R, Mills K, Berry DL, Baehrecke EH et al. (2009). Autophagy, not apoptosis, is essential for midgut cell death in Drosophila. Curr Biol 19: 1741–1746.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Deretic V . (2010). Autophagy in infection. Curr Opin Cell Biol 22: 252–262.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Djavaheri-Mergny M, Amelotti M, Mathieu J, Besancon F, Bauvy C, Souquere S et al. (2006). NF-kappaB activation represses tumor necrosis factor-alpha-induced autophagy. J Biol Chem 281: 30373–30382.

    CAS  PubMed  Google Scholar 

  • Egan DF, Shackelford DB, Mihaylova MM, Gelino S, Kohnz RA, Mair W et al. (2011). Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331: 456–461.

    CAS  PubMed  Google Scholar 

  • Elstrom RL, Bauer DE, Buzzai M, Karnauskas R, Harris MH, Plas DR et al. (2004). Akt stimulates aerobic glycolysis in cancer cells. Cancer Res 64: 3892–3899.

    CAS  PubMed  Google Scholar 

  • Eng CH, Abraham RT . (2010). Glutaminolysis yields a metabolic by-product that stimulates autophagy. Autophagy 6: 968–970.

    PubMed  PubMed Central  Google Scholar 

  • Eng CH, Yu K, Lucas J, White E, Abraham RT . (2010). Ammonia derived from glutaminolysis is a diffusible regulator of autophagy. Sci Signal 3: ra31.

    PubMed  Google Scholar 

  • Filimonenko M, Isakson P, Finley KD, Anderson M, Jeong H, Melia TJ et al. (2010). The selective macroautophagic degradation of aggregated proteins requires the PI3P-binding protein Alfy. Mol Cell 38: 265–279.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Flier JS, Mueckler MM, Usher P, Lodish HF . (1987). Elevated levels of glucose transport and transporter messenger RNA are induced by ras or src oncogenes. Science 235: 1492–1495.

    CAS  PubMed  Google Scholar 

  • Fox CJ, Hammerman PS, Thompson CB . (2005). Fuel feeds function: energy metabolism and the T-cell response. Nat Rev Immunol 5: 844–852.

    CAS  PubMed  Google Scholar 

  • Funderburk SF, Wang QJ, Yue Z . (2010). The Beclin 1–VPS34 complex—at the crossroads of autophagy and beyond. Trends Cell Biol 20: 355–362.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Furuta S, Hidaka E, Ogata A, Yokota S, Kamata T . (2004). Ras is involved in the negative control of autophagy through the class I PI3-kinase. Oncogene 23: 3898–3904.

    CAS  PubMed  Google Scholar 

  • Gaglio D, Soldati C, Vanoni M, Alberghina L, Chiaradonna F . (2009). Glutamine deprivation induces abortive S-phase rescued by deoxyribonucleotides in k-ras transformed fibroblasts. PLoS One 4: e4715.

    PubMed  PubMed Central  Google Scholar 

  • Galluzzi L, Morselli E, Kepp O, Marino G, Michaud M, Vitale I et al. (2010). Oncosuppressive functions of autophagy. Antioxid Redox Signal 14: 2251–2269.

    PubMed  Google Scholar 

  • Gao P, Tchernyshyov I, Chang TC, Lee YS, Kita K, Ochi T et al. (2009). c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature 458: 762–765.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guo JY, Chen HY, Mathew R, Fan J, Strohecker AM, Karsli-Uzunbas G et al. (2011). Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes Dev 25: 460–470.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gurusamy N, Lekli I, Mukherjee S, Ray D, Ahsan MK, Gherghiceanu M et al. (2010). Cardioprotection by resveratrol: a novel mechanism via autophagy involving the mTORC2 pathway. Cardiovasc Res 86: 103–112.

    CAS  PubMed  Google Scholar 

  • Hirsch HA, Iliopoulos D, Joshi A, Zhang Y, Jaeger SA, Bulyk M et al. (2010). A transcriptional signature and common gene networks link cancer with lipid metabolism and diverse human diseases. Cancer Cell 17: 348–361.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A, Miura Y et al. (2009). Nutrient-dependent mTORC1 association with the ULK1–Atg13–FIP200 complex required for autophagy. Mol Biol Cell 20: 1981–1991.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Q, Wu YT, Tan HL, Ong CN, Shen HM . (2009). A novel function of poly(ADP-ribose) polymerase-1 in modulation of autophagy and necrosis under oxidative stress. Cell Death Differ 16: 264–277.

    CAS  PubMed  Google Scholar 

  • Hubbard VM, Valdor R, Patel B, Singh R, Cuervo AM, Macian F . (2010). Macroautophagy regulates energy metabolism during effector T cell activation. J Immunol 185: 7349–7357.

    CAS  PubMed  Google Scholar 

  • Jung CH, Jun CB, Ro SH, Kim YM, Otto NM, Cao J et al. (2009). ULK–Atg13–FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell 20: 1992–2003.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kanazawa T, Taneike I, Akaishi R, Yoshizawa F, Furuya N, Fujimura S et al. (2004). Amino acids and insulin control autophagic proteolysis through different signaling pathways in relation to mTOR in isolated rat hepatocytes. J Biol Chem 279: 8452–8459.

    CAS  PubMed  Google Scholar 

  • Karantza-Wadsworth V, Patel S, Kravchuk O, Chen G, Mathew R, Jin S et al. (2007). Autophagy mitigates metabolic stress and genome damage in mammary tumorigenesis. Genes Dev 21: 1621–1635.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kawauchi K, Araki K, Tobiume K, Tanaka N . (2008). p53 regulates glucose metabolism through an IKK–NF-kappaB pathway and inhibits cell transformation. Nat Cell Biol 10: 611–618.

    CAS  PubMed  Google Scholar 

  • Kim J, Kundu M, Viollet B, Guan KL . (2011a). AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 13: 132–141.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim MJ, Woo SJ, Yoon CH, Lee JS, An S, Choi YH et al. (2011b). Involvement of autophagy in oncogenic K-Ras-induced malignant cell transformation. J Biol Chem 286: 12924–12932.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kirkin V, Lamark T, Sou YS, Bjorkoy G, Nunn JL, Bruun JA et al. (2009). A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Mol Cell 33: 505–516.

    CAS  PubMed  Google Scholar 

  • Kondoh H, Lleonart ME, Gil J, Wang J, Degan P, Peters G et al. (2005). Glycolytic enzymes can modulate cellular lifespan. Cancer Res 65: 177–185.

    CAS  PubMed  Google Scholar 

  • Korolchuk VI, Saiki S, Lichtenberg M, Siddiqi FH, Roberts EA, Imarisio S et al. (2011). Lysosomal positioning coordinates cellular nutrient responses. Nat Cell Biol 13: 453–460.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kroemer G, Levine B . (2008). Autophagic cell death: the story of a misnomer. Nat Rev Mol Cell Biol 9: 1004–1010.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuhajda FP, Jenner K, Wood FD, Hennigar RA, Jacobs LB, Dick JD et al. (1994). Fatty acid synthesis: a potential selective target for antineoplastic therapy. Proc Natl Acad Sci USA 91: 6379–6383.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kundu M, Lindsten T, Yang CY, Wu J, Zhao F, Zhang J et al. (2008). Ulk1 plays a critical role in the autophagic clearance of mitochondria and ribosomes during reticulocyte maturation. Blood 112: 1493–1502.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JW, Park S, Takahashi Y, Wang HG . (2010). The association of AMPK with ULK1 regulates autophagy. PLoS One 5: e15394.

    PubMed  PubMed Central  Google Scholar 

  • Lee MN, Ha SH, Kim J, Koh A, Lee CS, Kim JH et al. (2009). Glycolytic flux signals to mTOR through glyceraldehyde-3-phosphate dehydrogenase-mediated regulation of Rheb. Mol Cell Biol 29: 3991–4001.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H et al. (1999). Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402: 672–676.

    CAS  PubMed  Google Scholar 

  • Lipinski MM, Hoffman G, Ng A, Zhou W, Py BF, Hsu E et al. (2010). A genome-wide siRNA screen reveals multiple mTORC1 independent signaling pathways regulating autophagy under normal nutritional conditions. Dev Cell 18: 1041–1052.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Livesey KM, Tang D, Zeh HJ, Lotze MT . (2009). Autophagy inhibition in combination cancer treatment. Curr Opin Investig Drugs 10: 1269–1279.

    CAS  PubMed  Google Scholar 

  • Lock R, Roy S, Kenific CM, Su JS, Salas E, Ronen SM et al. (2011). Autophagy facilitates glycolysis during Ras-mediated oncogenic transformation. Mol Biol Cell 22: 165–178.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lupu R, Menendez JA . (2006). Pharmacological inhibitors of fatty acid synthase (FASN)—catalyzed endogenous fatty acid biogenesis: a new family of anticancer agents? Curr Pharm Biotechnol 7: 483–493.

    CAS  PubMed  Google Scholar 

  • Mammucari C, Milan G, Romanello V, Masiero E, Rudolf R, Del Piccolo P et al. (2007). FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab 6: 458–471.

    CAS  PubMed  Google Scholar 

  • Marino G, Martins I, Kroemer G . (2011). Autophagy in ras-induced malignant transformation: fatal or vital? Mol Cell 42: 1–3.

    CAS  PubMed  Google Scholar 

  • Marino G, Salvador-Montoliu N, Fueyo A, Knecht E, Mizushima N, Lopez-Otin C . (2007). Tissue-specific autophagy alterations and increased tumorigenesis in mice deficient in Atg4C/autophagin-3. J Biol Chem 282: 18573–18583.

    CAS  PubMed  Google Scholar 

  • Martinez-Outschoorn UE, Trimmer C, Lin Z, Whitaker-Menezes D, Chiavarina B, Zhou J et al. (2010). Autophagy in cancer associated fibroblasts promotes tumor cell survival: role of hypoxia, HIF1 induction and NFkappaB activation in the tumor stromal microenvironment. Cell Cycle 9: 3515–3533.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mathew R, Karp CM, Beaudoin B, Vuong N, Chen G, Chen HY et al. (2009). Autophagy suppresses tumorigenesis through elimination of p62. Cell 137: 1062–1075.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mathew R, Kongara S, Beaudoin B, Karp CM, Bray K, Degenhardt K et al. (2007). Autophagy suppresses tumor progression by limiting chromosomal instability. Genes Dev 21: 1367–1381.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mathew R, White E . (2011). Autophagy in tumorigenesis and energy metabolism: friend by day, foe by night. Curr Opin Genet Dev 21: 113–119.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matoba S, Kang JG, Patino WD, Wragg A, Boehm M, Gavrilova O et al. (2006). p53 regulates mitochondrial respiration. Science 312: 1650–1653.

    CAS  PubMed  Google Scholar 

  • McAllister SS, Weinberg RA . (2010). Tumor–host interactions: a far-reaching relationship. J Clin Oncol 28: 4022–4028.

    PubMed  Google Scholar 

  • Menendez JA, Lupu R . (2007). Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer 7: 763–777.

    CAS  PubMed  Google Scholar 

  • Meng M, Chen S, Lao T, Liang D, Sang N . (2010). Nitrogen anabolism underlies the importance of glutaminolysis in proliferating cells. Cell Cycle 9: 3921–3932.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mordier S, Deval C, Bechet D, Tassa A, Ferrara M . (2000). Leucine limitation induces autophagy and activation of lysosome-dependent proteolysis in C2C12 myotubes through a mammalian target of rapamycin-independent signaling pathway. J Biol Chem 275: 29900–29906.

    CAS  PubMed  Google Scholar 

  • Narendra D, Tanaka A, Suen DF, Youle RJ . (2008). Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol 183: 795–803.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Novak I, Kirkin V, McEwan DG, Zhang J, Wild P, Rozenknop A et al. (2010). Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep 11: 45–51.

    CAS  PubMed  Google Scholar 

  • Petiot A, Ogier-Denis E, Blommaart EF, Meijer AJ, Codogno P . (2000). Distinct classes of phosphatidylinositol 3′-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells. J Biol Chem 275: 992–998.

    CAS  PubMed  Google Scholar 

  • Qu X, Yu J, Bhagat G, Furuya N, Hibshoosh H, Troxel A et al. (2003). Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest 112: 1809–1820.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Racker E, Resnick RJ, Feldman R . (1985). Glycolysis and methylaminoisobutyrate uptake in rat-1 cells transfected with ras or myc oncogenes. Proc Natl Acad Sci USA 82: 3535–3538.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ravitz MJ, Chen L, Lynch M, Schmidt EV . (2007). c-myc repression of TSC2 contributes to control of translation initiation and Myc-induced transformation. Cancer Res 67: 11209–11217.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Renna M, Jimenez-Sanchez M, Sarkar S, Rubinsztein DC . (2010). Chemical inducers of autophagy that enhance the clearance of mutant proteins in neurodegenerative diseases. J Biol Chem 285: 11061–11067.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rouschop KM, Ramaekers CH, Schaaf MB, Keulers TG, Savelkouls KG, Lambin P et al. (2009). Autophagy is required during cycling hypoxia to lower production of reactive oxygen species. Radiother Oncol 92: 411–416.

    CAS  PubMed  Google Scholar 

  • Rouschop KM, van den Beucken T, Dubois L, Niessen H, Bussink J, Savelkouls K et al. (2010). The unfolded protein response protects human tumor cells during hypoxia through regulation of the autophagy genes MAP1LC3B and ATG5. J Clin Invest 120: 127–141.

    CAS  PubMed  Google Scholar 

  • Sakiyama T, Musch MW, Ropeleski MJ, Tsubouchi H, Chang EB . (2009). Glutamine increases autophagy under basal and stressed conditions in intestinal epithelial cells. Gastroenterology 136: 924–932.

    CAS  PubMed  Google Scholar 

  • Salazar M, Carracedo A, Salanueva IJ, Hernandez-Tiedra S, Lorente M, Egia A et al. (2009). Cannabinoid action induces autophagy-mediated cell death through stimulation of ER stress in human glioma cells. J Clin Invest 119: 1359–1372.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM . (2010). Ragulator–Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141: 290–303.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sandoval H, Thiagarajan P, Dasgupta SK, Schumacher A, Prchal JT, Chen M et al. (2008). Essential role for Nix in autophagic maturation of erythroid cells. Nature 454: 232–235.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sarkar S, Perlstein EO, Imarisio S, Pineau S, Cordenier A, Maglathlin RL et al. (2007). Small molecules enhance autophagy and reduce toxicity in Huntington's disease models. Nat Chem Biol 3: 331–338.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Scherz-Shouval R, Shvets E, Fass E, Shorer H, Gil L, Elazar Z . (2007). Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J 26: 1749–1760.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Semenza GL . (2010). HIF-1: upstream and downstream of cancer metabolism. Curr Opin Genet Dev 20: 51–56.

    CAS  PubMed  Google Scholar 

  • Shaw RJ, Cantley LC . (2006). Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature 441: 424–430.

    CAS  PubMed  Google Scholar 

  • Singh R, Kaushik S, Wang Y, Xiang Y, Novak I, Komatsu M et al. (2009). Autophagy regulates lipid metabolism. Nature 458: 1131–1135.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Solomon VR, Lee H . (2009). Chloroquine and its analogs: a new promise of an old drug for effective and safe cancer therapies. Eur J Pharmacol 625: 220–233.

    CAS  PubMed  Google Scholar 

  • Takamura A, Komatsu M, Hara T, Sakamoto A, Kishi C, Waguri S et al. (2011). Autophagy-deficient mice develop multiple liver tumors. Genes Dev 25: 795–800.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Telang S, Yalcin A, Clem AL, Bucala R, Lane AN, Eaton JW et al. (2006). Ras transformation requires metabolic control by 6-phosphofructo-2-kinase. Oncogene 25: 7225–7234.

    CAS  PubMed  Google Scholar 

  • Thoreen CC, Kang SA, Chang JW, Liu Q, Zhang J, Gao Y et al. (2009). An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J Biol Chem 284: 8023–8032.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Turcotte S, Chan DA, Sutphin PD, Hay MP, Denny WA, Giaccia AJ . (2008). A molecule targeting VHL-deficient renal cell carcinoma that induces autophagy. Cancer Cell 14: 90–102.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vander Heiden MG, Cantley LC, Thompson CB . (2009). Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324: 1029–1033.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vizan P, Boros LG, Figueras A, Capella G, Mangues R, Bassilian S et al. (2005). K-ras codon-specific mutations produce distinctive metabolic phenotypes in NIH3T3 mice [corrected] fibroblasts. Cancer Res 65: 5512–5515.

    CAS  PubMed  Google Scholar 

  • Weinberg F, Hamanaka R, Wheaton WW, Weinberg S, Joseph J, Lopez M et al. (2010). Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc Natl Acad Sci USA 107: 8788–8793.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Williams A, Sarkar S, Cuddon P, Ttofi EK, Saiki S, Siddiqi FH et al. (2008). Novel targets for Huntington's disease in an mTOR-independent autophagy pathway. Nat Chem Biol 4: 295–305.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wise DR, DeBerardinis RJ, Mancuso A, Sayed N, Zhang XY, Pfeiffer HK et al. (2008). Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci USA 105: 18782–18787.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wong E, Cuervo AM . (2010). Autophagy gone awry in neurodegenerative diseases. Nat Neurosci 13: 805–811.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang S, Wang X, Contino G, Liesa M, Sahin E, Ying H et al. (2011). Pancreatic cancers require autophagy for tumor growth. Genes Dev 25: 717–729.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yousefi S, Perozzo R, Schmid I, Ziemiecki A, Schaffner T, Scapozza L et al. (2006). Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nat Cell Biol 8: 1124–1132.

    CAS  PubMed  Google Scholar 

  • Yu L, Wan F, Dutta S, Welsh S, Liu Z, Freundt E et al. (2006). Autophagic programmed cell death by selective catalase degradation. Proc Natl Acad Sci USA 103: 4952–4957.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yun J, Rago C, Cheong I, Pagliarini R, Angenendt P, Rajagopalan H et al. (2009). Glucose deprivation contributes to the development of KRAS pathway mutations in tumor cells. Science 325: 1555–1559.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yuneva M, Zamboni N, Oefner P, Sachidanandam R, Lazebnik Y . (2007). Deficiency in glutamine but not glucose induces MYC-dependent apoptosis in human cells. J Cell Biol 178: 93–105.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Bosch-Marce M, Shimoda LA, Tan YS, Baek JH, Wesley JB et al. (2008). Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem 283: 10892–10903.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Yu J, Pan H, Hu P, Hao Y, Cai W et al. (2007). Small molecule regulators of autophagy identified by an image-based high-throughput screen. Proc Natl Acad Sci USA 104: 19023–19028.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C H Eng.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eng, C., Abraham, R. The autophagy conundrum in cancer: influence of tumorigenic metabolic reprogramming. Oncogene 30, 4687–4696 (2011). https://doi.org/10.1038/onc.2011.220

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.220

Keywords

This article is cited by

Search

Quick links