Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

microRNA-29 can regulate expression of the long non-coding RNA gene MEG3 in hepatocellular cancer

Abstract

The human genome is replete with long non-coding RNAs (lncRNA), many of which are transcribed and likely to have a functional role. Microarray analysis of >23 000 lncRNAs revealed downregulation of 712 (3%) lncRNA in malignant hepatocytes, among which maternally expressed gene 3 (MEG3) was downregulated by 210-fold relative to expression in non-malignant hepatocytes. MEG3 expression was markedly reduced in four human hepatocellular cancer (HCC) cell lines compared with normal hepatocytes by real-time PCR. RNA in situ hybridization showed intense cytoplasmic expression of MEG3 in non-neoplastic liver with absent or very weak expression in HCC tissues. Enforced expression of MEG3 in HCC cells significantly decreased both anchorage-dependent and -independent cell growth, and induced apoptosis. MEG3 promoter hypermethylation was identified by methylation-specific PCR and MEG3 expression was increased with inhibition of methylation with either 5-Aza-2-Deoxycytidine, or siRNA to DNA Methyltransferase (DNMT) 1 and 3b in HCC cells. MiRNA-dependent regulation of MEG3 expression was studied by evaluating the involvement of miR-29, which can modulate DNMT 1 and 3. Overexpression of mir-29a increased expression of MEG3. GTL2, the murine homolog of MEG3, was reduced in liver tissues from hepatocyte-specific miR-29a/b1 knock-out mice compared with wild-type controls. These data show that methylation-dependent tissue-specific regulation of the lncRNA MEG3 by miR-29a may contribute to HCC growth and highlight the inter-relationship between two classes of non-coding RNA, miRNAs and lncRNAs, and epigenetic regulation of gene expression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Benetatos L, Dasoula A, Hatzimichael E, Georgiou I, Syrrou M, Bourantas KL . (2008). Promoter hypermethylation of the MEG3 (DLK1/MEG3) imprinted gene in multiple myeloma. Clin Lymphoma Myeloma 8: 171–175.

    Article  CAS  Google Scholar 

  • Benetatos L, Hatzimichael E, Dasoula A, Dranitsaris G, Tsiara S, Syrrou M et al. (2010). CpG methylation analysis of the MEG3 and SNRPN imprinted genes in acute myeloid leukemia and myelodysplastic syndromes. Leuk Res 34: 148–153.

    Article  CAS  Google Scholar 

  • Braconi C, Valeri N, Gasparini P, Huang N, Taccioli C, Nuovo G et al. (2010). Hepatitis C virus proteins modulate microRNA expression and chemosensitivity in malignant hepatocytes. Clin Cancer Res 16: 957–966.

    Article  CAS  Google Scholar 

  • Braconi C, Valeri N, Kogure T, Gasparini P, Huang N, Nuovo GJ et al. (2011). Expression and functional role of a transcribed noncoding RNA with an ultraconserved element in hepatocellular carcinoma. Proc Natl Acad Sci USA 108: 786–791.

    Article  CAS  Google Scholar 

  • Bressac B, Galvin KM, Liang TJ, Isselbacher KJ, Wands JR, Ozturk M . (1990). Abnormal structure and expression of p53 gene in human hepatocellular carcinoma. Proc Natl Acad Sci USA 87: 1973–1977.

    Article  CAS  Google Scholar 

  • Cazals-Hatem D, Rebouissou S, Bioulac-Sage P, Bluteau O, Blanche H, Franco D et al. (2004). Clinical and molecular analysis of combined hepatocellular-cholangiocarcinomas. J Hepatol 41: 292–298.

    Article  CAS  Google Scholar 

  • Coulouarn C, Factor VM, Andersen JB, Durkin ME, Thorgeirsson SS . (2009). Loss of miR-122 expression in liver cancer correlates with suppression of the hepatic phenotype and gain of metastatic properties. Oncogene 28: 3526–3536.

    Article  CAS  Google Scholar 

  • Croce CM . (2009). Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet 10: 704–714.

    Article  CAS  Google Scholar 

  • Fabbri M, Garzon R, Cimmino A, Liu Z, Zanesi N, Callegari E et al. (2007). MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci USA 104: 15805–15810.

    Article  CAS  Google Scholar 

  • Garzon R, Liu S, Fabbri M, Liu Z, Heaphy CE, Callegari E et al. (2009). MicroRNA-29b induces global DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1. Blood 113: 6411–6418.

    Article  CAS  Google Scholar 

  • Gramantieri L, Fornari F, Ferracin M, Veronese A, Sabbioni S, Calin GA et al. (2009). MicroRNA-221 targets Bmf in hepatocellular carcinoma and correlates with tumor multifocality. Clin Cancer Res 15: 5073–5081.

    Article  CAS  Google Scholar 

  • Hagan JP, O'Neill BL, Stewart CL, Kozlov SV, Croce CM . (2009). At least ten genes define the imprinted Dlk1-Dio3 cluster on mouse chromosome 12qF1. PLoS One 4: e4352.

    Article  Google Scholar 

  • Huarte M, Rinn JL . (2010). Large non-coding RNAs: missing links in cancer? Hum Mol Genet 19: R152–R161.

    Article  CAS  Google Scholar 

  • Kawaji H, Severin J, Lizio M, Forrest AR, van NE, Rehli M et al. (2011). Update of the FANTOM web resource: from mammalian transcriptional landscape to its dynamic regulation. Nucleic Acids Res 39: D856–D860.

    Article  CAS  Google Scholar 

  • Ji J, Shi J, Budhu A, Yu Z, Forgues M, Roessler S et al. (2009). MicroRNA expression, survival, and response to interferon in liver cancer. N Engl J Med 361: 1437–1447.

    Article  CAS  Google Scholar 

  • Louro R, Smirnova AS, Verjovski-Almeida S . (2009). Long intronic noncoding RNA transcription: expression noise or expression choice? Genomics 93: 291–298.

    Article  CAS  Google Scholar 

  • Lujambio A, Ropero S, Ballestar E, Fraga MF, Cerrato C, Seti F et al. (2007). Genetic unmasking of an epigenetically silenced microRNA in human cancer cells. Cancer Res 67: 1424–1429.

    Article  CAS  Google Scholar 

  • Lujambio A, Calin GA, Villanueva A, Ropero S, Sanchez-Caspedes M, Blanco D et al. (2008). A microRNA DNA methylation signature for human cancer metastasis. Proc Natl Acad Sci USA 105: 13556–13561.

    Article  CAS  Google Scholar 

  • Lujambio A, Portela A, Liz J, Melo SA, Rossi S, Spizzo R et al. (2010). CpG island hypermethylation-associated silencing of non-coding RNAs transcribed from ultraconserved regions in human cancer. Oncogene 29: 6390–6401.

    Article  CAS  Google Scholar 

  • Matouk IJ, Degroot N, Mezan S, Ayesh S, bu-Lail R, Hochberg A et al. (2007). The H19 non-coding RNA is essential for human tumor growth. PLoS One 2: e845.

    Article  Google Scholar 

  • Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T . (2007). MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 133: 647–658.

    Article  CAS  Google Scholar 

  • Mercer TR, Dinger ME, Mattick JS . (2009). Long non-coding RNAs: insights into functions. Nat Rev Genet 10: 155–159.

    Article  CAS  Google Scholar 

  • Oliva J, Bardag-Gorce F, French BA, Li J, French SW . (2009). The regulation of non-coding RNA expression in the liver of mice fed DDC. Exp Mol Pathol 87: 12–19.

    Article  CAS  Google Scholar 

  • Orom UA, Derrien T, Beringer M, Gumireddy K, Gardini A, Bussotti G et al. (2010). Long noncoding RNAs with enhancer-like function in human cells. Cell 143: 46–58.

    Article  CAS  Google Scholar 

  • Panzitt K, Tschernatsch MM, Guelly C, Moustafa T, Stradner M, Strohmaier HM et al. (2007). Characterization of HULC, a novel gene with striking up-regulation in hepatocellular carcinoma, as noncoding RNA. Gastroenterology 132: 330–342.

    Article  CAS  Google Scholar 

  • Pineau P, Volinia S, McJunkin K, Marchio A, Battiston C, Terris B et al. (2010). miR-221 overexpression contributes to liver tumorigenesis. Proc Natl Acad Sci USA 107: 264–269.

    Article  CAS  Google Scholar 

  • Saito Y, Liang G, Egger G, Friedman JM, Chuang JC, Coetzee GA et al. (2010). Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell 9: 435–443.

    Article  Google Scholar 

  • Su H, Yang JR, Xu T, Huang J, Xu L, Yuan Y et al. (2009). MicroRNA-101, down-regulated in hepatocellular carcinoma, promotes apoptosis and suppresses tumorigenicity. Cancer Res 69: 1135–1142.

    Article  CAS  Google Scholar 

  • Wang B, Majumder S, Nuovo G, Kutay H, Volinia S, Patel T et al. (2009). Role of microRNA-155 at early stages of hepatocarcinogenesis induced by choline-deficient and amino acid-defined diet in C57BL/6 mice. Hepatology 50: 1152–1161.

    Article  CAS  Google Scholar 

  • Wojcik SE, Rossi S, Shimizu M, Nicoloso MS, Cimmino A, Alder H et al. (2010). Non-codingRNA sequence variations in human chronic lymphocytic leukemia and colorectal cancer. Carcinogenesis 31: 208–215.

    Article  CAS  Google Scholar 

  • Xiong Y, Fang JH, Yun JP, Yang J, Zhang Y, Jia WH et al. (2010). Effects of microRNA-29 on apoptosis, tumorigenicity, and prognosis of hepatocellular carcinoma. Hepatology 51: 836–845.

    CAS  PubMed  Google Scholar 

  • Zhang X, Gejman R, Mahta A, Zhong Y, Rice KA, Zhou Y et al. (2010a). Maternally expressed gene 3, an imprinted noncoding RNA gene, is associated with meningioma pathogenesis and progression. Cancer Res 70: 2350–2358.

    Article  CAS  Google Scholar 

  • Zhang X, Rice K, Wang Y, Chen W, Zhong Y, Nakayama Y et al. (2010b). Maternally expressed gene 3 (MEG3) noncoding ribonucleic acid: isoform structure, expression, and functions. Endocrinology 151: 939–947.

    Article  CAS  Google Scholar 

  • Zhang X, Zhou Y, Mehta KR, Danila DC, Scolavino S, Johnson SR et al. (2003). A pituitary-derived MEG3 isoform functions as a growth suppressor in tumor cells. J Clin Endocrinol Metab 88: 5119–5126.

    Article  CAS  Google Scholar 

  • Zhao J, Dahle D, Zhou Y, Zhang X, Klibanski A . (2005). Hypermethylation of the promoter region is associated with the loss of MEG3 gene expression in human pituitary tumors. J Clin Endocrinol Metab 90: 2179–2186.

    Article  CAS  Google Scholar 

  • Zhou Y, Zhong Y, Wang Y, Zhang X, Batista DL, Gejman R et al. (2007). Activation of p53 by MEG3 non-coding RNA. J Biol Chem 282: 24731–24742.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Patel.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braconi, C., Kogure, T., Valeri, N. et al. microRNA-29 can regulate expression of the long non-coding RNA gene MEG3 in hepatocellular cancer. Oncogene 30, 4750–4756 (2011). https://doi.org/10.1038/onc.2011.193

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.193

Keywords

This article is cited by

Search

Quick links