Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Raf kinases in cancer–roles and therapeutic opportunities

Abstract

Raf are conserved, ubiquitous serine/protein kinases discovered as the cellular elements hijacked by transforming retroviruses. The three mammalian RAF proteins (A, B and CRAF) can be activated by the human oncogene RAS, downstream from which they exert both kinase-dependent and kinase-independent, tumor-promoting functions. The kinase-dependent functions are mediated chiefly by the MEK/ERK pathway, whose activation is associated with proliferation in a broad range of human tumors. Almost 10 years ago, activating BRAF mutations were discovered in a subset of human tumors, and in the past year treatment with small-molecule RAF inhibitors has yielded unprecedented response rates in melanoma patients. Thus, Raf qualifies as an excellent molecular target for anticancer therapy. This review focuses on the role of BRAF and CRAF in different aspects of carcinogenesis, on the success of molecular therapies targeting Raf and the challenges they present.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Alavi A, Hood JD, Frausto R, Stupack DG, Cheresh DA . (2003). Role of Raf in vascular protection from distinct apoptotic stimuli. Science 301: 94–96.

    Article  CAS  PubMed  Google Scholar 

  • Alavi AS, Acevedo L, Min W, Cheresh DA . (2007). Chemoresistance of endothelial cells induced by basic fibroblast growth factor depends on Raf-1-mediated inhibition of the proapoptotic kinase, ASK1. Cancer Res 67: 2766–2772.

    CAS  PubMed  Google Scholar 

  • Argast GM, Croy CH, Couts KL, Zhang Z, Litman E, Chan DC et al. (2009). Plexin B1 is repressed by oncogenic B-Raf signaling and functions as a tumor suppressor in melanoma cells. Oncogene 28: 2697–2709.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arkenau HT, Kefford R, Long GV . (2010). Targeting BRAF for patients with melanoma. Br J Cancer 104: 392–398.

    PubMed  PubMed Central  Google Scholar 

  • Arozarena I, Sanchez-Laorden B, Packer L, Hidalgo-Carcedo C, Hayward R, Viros A et al. (2010). Oncogenic BRAF induces melanoma cell invasion by downregulating the cGMP-specific phosphodiesterase PDE5A. Cancer Cell 19: 45–57.

    Google Scholar 

  • Balmanno K, Cook SJ . (2009). Tumour cell survival signalling by the ERK1/2 pathway. Cell Death Differ 16: 368–377.

    CAS  PubMed  Google Scholar 

  • Baumann B, Weber CK, Troppmair J, Whiteside S, Israel A, Rapp UR et al. (2000). Raf induces NF-kappa B by membrane shuttle kinase MEKK1, a signaling pathway critical for transformation. Proc Natl Acad Sci USA 97: 4615–4620.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beliveau A, Mott JD, Lo A, Chen EI, Koller AA, Yaswen P et al. (2010). Raf-induced MMP9 disrupts tissue architecture of human breast cells in three-dimensional culture and is necessary for tumor growth in vivo. Genes Dev 24: 2800–2811.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bollag G, Hirth P, Tsai J, Zhang J, Ibrahim PN, Cho H et al. (2010). Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature 467: 596–599.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boni A, Cogdill AP, Dang P, Udayakumar D, Njauw CN, Sloss CM et al. (2010). Selective BRAFV600E inhibition enhances T-cell recognition of melanoma without affecting lymphocyte function. Cancer Res 70: 5213–5219.

    CAS  PubMed  Google Scholar 

  • Calipel A, Mouriaux F, Glotin AL, Malecaze F, Faussat AM, Mascarelli F . (2006). Extracellular signal-regulated kinase-dependent proliferation is mediated through the protein kinase A/B-Raf pathway in human uveal melanoma cells. J Biol Chem 281: 9238–9250.

    CAS  PubMed  Google Scholar 

  • Carragher LA, Snell KR, Giblett SM, Aldridge VS, Patel B, Cook SJ et al. (2010). V600EBraf induces gastrointestinal crypt senescence and promotes tumour progression through enhanced CpG methylation of p16INK4a. EMBO Mol Med 2: 458–471.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Catalanotti F, Reyes G, Jesenberger V, Galabova-Kovacs G, de Matos Simoes R, Carugo O et al. (2009). A Mek1–Mek2 heterodimer determines the strength and duration of the Erk signal. Nat Struct Mol Biol 16: 294–303.

    CAS  PubMed  Google Scholar 

  • Cekanova M, Majidy M, Masi T, Al-Wadei HA, Schuller HM . (2007). Overexpressed Raf-1 and phosphorylated cyclic adenosine 3′-5′-monophosphatate response element-binding protein are early markers for lung adenocarcinoma. Cancer 109: 1164–1173.

    CAS  PubMed  Google Scholar 

  • Ceteci F, Ceteci S, Karreman C, Kramer BW, Asan E, Gotz R et al. (2007). Disruption of tumor cell adhesion promotes angiogenic switch and progression to micrometastasis in RAF-driven murine lung cancer. Cancer Cell 12: 145–159.

    CAS  PubMed  Google Scholar 

  • Chan SR, Blackburn EH . (2004). Telomeres and telomerase. Philos Trans R Soc Lond B Biol Sci 359: 109–121.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chang CJ, Yang JY, Xia W, Chen CT, Xie X, Chao CH et al. (2011). EZH2 promotes expansion of breast tumor initiating cells through activation of RAF1–beta-catenin signaling. Cancer Cell 19: 86–100.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Fujii K, Zhang L, Roberts T, Fu H . (2001). Raf-1 promotes cell survival by antagonizing apoptosis signal-regulating kinase 1 through a MEK–ERK independent mechanism. Proc Natl Acad Sci USA 98: 7783–7788.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cheung M, Sharma A, Madhunapantula SV, Robertson GP . (2008). Akt3 and mutant V600E B-Raf cooperate to promote early melanoma development. Cancer Res 68: 3429–3439.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ciampi R, Knauf JA, Kerler R, Gandhi M, Zhu Z, Nikiforova MN et al. (2005). Oncogenic AKAP9–BRAF fusion is a novel mechanism of MAPK pathway activation in thyroid cancer. J Clin Invest 115: 94–101.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dai Y, Chen S, Pei XY, Almenara JA, Kramer LB, Venditti CA et al. (2008). Interruption of the Ras/MEK/ERK signaling cascade enhances Chk1 inhibitor-induced DNA damage in vitro and in vivo in human multiple myeloma cells. Blood 112: 2439–2449.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dangi-Garimella S, Yun J, Eves EM, Newman M, Erkeland SJ, Hammond SM et al. (2009). Raf kinase inhibitory protein suppresses a metastasis signalling cascade involving LIN28 and let-7. EMBO J 28: 347–358.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dankort D, Curley DP, Cartlidge RA, Nelson B, Karnezis AN, Damsky Jr WE et al. (2009). Braf(V600E) cooperates with Pten loss to induce metastatic melanoma. Nat Genet 41: 544–552.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dankort D, Filenova E, Collado M, Serrano M, Jones K, McMahon M . (2007). A new mouse model to explore the initiation, progression, and therapy of BRAFV600E-induced lung tumors. Genes Dev 21: 379–384.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dasgupta P, Rastogi S, Pillai S, Ordonez-Ercan D, Morris M, Haura E et al. (2006). Nicotine induces cell proliferation by beta-arrestin-mediated activation of Src and Rb–Raf-1 pathways. J Clin Invest 116: 2208–2217.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dasgupta P, Sun J, Wang S, Fusaro G, Betts V, Padmanabhan J et al. (2004). Disruption of the Rb–Raf-1 interaction inhibits tumor growth and angiogenesis. Mol Cell Biol 24: 9527–9541.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S et al. (2002). Mutations of the BRAF gene in human cancer. Nature 417: 949–954.

    CAS  PubMed  Google Scholar 

  • Degen A, Satzger I, Voelker B, Kapp A, Hauschild A, Gutzmer R . (2010). Does basal cell carcinoma belong to the spectrum of sorafenib-induced epithelial skin cancers. Dermatology 221: 193–196.

    CAS  PubMed  Google Scholar 

  • Dessars B, De Raeve LE, El Housni H, Debouck CJ, Sidon PJ, Morandini R et al. (2007). Chromosomal translocations as a mechanism of BRAF activation in two cases of large congenital melanocytic nevi. J Invest Dermatol 127: 1468–1470.

    CAS  PubMed  Google Scholar 

  • Dhomen N, Reis-Filho JS, da Rocha Dias S, Hayward R, Savage K, Delmas V et al. (2009). Oncogenic Braf induces melanocyte senescence and melanoma in mice. Cancer Cell 15: 294–303.

    CAS  PubMed  Google Scholar 

  • Dougherty MK, Muller J, Ritt DA, Zhou M, Zhou XZ, Copeland TD et al. (2005). Regulation of Raf-1 by direct feedback phosphorylation. Mol Cell 17: 215–224.

    CAS  PubMed  Google Scholar 

  • Dumaz N, Hayward R, Martin J, Ogilvie L, Hedley D, Curtin JA et al. (2006). In melanoma, RAS mutations are accompanied by switching signaling from BRAF to CRAF and disrupted cyclic AMP signaling. Cancer Res 66: 9483–9491.

    CAS  PubMed  Google Scholar 

  • Dunn GP, Old LJ, Schreiber RD . (2004). The three Es of cancer immunoediting. Annu Rev Immunol 22: 329–360.

    CAS  PubMed  Google Scholar 

  • Dwyer J, Li H, Xu D, Liu JP . (2007). Transcriptional regulation of telomerase activity: roles of the Ets transcription factor family. Ann NY Acad Sci 1114: 36–47.

    CAS  PubMed  Google Scholar 

  • Edwards J, Krishna NS, Witton CJ, Bartlett JM . (2003). Gene amplifications associated with the development of hormone-resistant prostate cancer. Clin Cancer Res 9: 5271–5281.

    CAS  PubMed  Google Scholar 

  • Ehrenreiter K, Kern F, Velamoor V, Meissl K, Galabova-Kovacs G, Sibilia M et al. (2009). Raf-1 addiction in Ras-induced skin carcinogenesis. Cancer Cell 16: 149–160.

    CAS  PubMed  Google Scholar 

  • Ehrenreiter K, Piazzolla D, Velamoor V, Sobczak I, Small JV, Takeda J et al. (2005). Raf-1 regulates Rho signaling and cell migration. J Cell Biol 168: 955–964.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Emuss V, Garnett M, Mason C, Marais R . (2005). Mutations of C-RAF are rare in human cancer because C-RAF has a low basal kinase activity compared with B-RAF. Cancer Res 65: 9719–9726.

    CAS  PubMed  Google Scholar 

  • Eves EM, Shapiro P, Naik K, Klein UR, Trakul N, Rosner MR . (2006). Raf kinase inhibitory protein regulates aurora B kinase and the spindle checkpoint. Mol Cell 23: 561–574.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fan S, Meng Q, Laterra JJ, Rosen EM . (2007). Ras effector pathways modulate scatter factor-stimulated NF-(kappa)B signaling and protection against DNA damage. Oncogene 26: 4774–4796.

    CAS  PubMed  Google Scholar 

  • Fedorov LM, Papadopoulos T, Tyrsin OY, Twardzik T, Gotz R, Rapp UR . (2003). Loss of p53 in craf-induced transgenic lung adenoma leads to tumor acceleration and phenotypic switch. Cancer Res 63: 2268–2277.

    CAS  PubMed  Google Scholar 

  • Fedorov LM, Tyrsin OY, Papadopoulos T, Camarero G, Gotz R, Rapp UR . (2002). Bcl-2 determines susceptibility to induction of lung cancer by oncogenic CRaf. Cancer Res 62: 6297–6303.

    CAS  PubMed  Google Scholar 

  • Flaherty KT, Puzanov I, Kim KB, Ribas A, McArthur GA, Sosman JA et al. (2010). Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med 363: 809–819.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fukuyo Y, Inoue M, Nakajima T, Higashikubo R, Horikoshi NT, Hunt C et al. (2008). Oxidative stress plays a critical role in inactivating mutant BRAF by geldanamycin derivatives. Cancer Res 68: 6324–6330.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garnett MJ, Rana S, Paterson H, Barford D, Marais R . (2005). Wild-type and mutant B-RAF activate C-RAF through distinct mechanisms involving heterodimerization. Mol Cell 20: 963–969.

    CAS  PubMed  Google Scholar 

  • Goel VK, Ibrahim N, Jiang G, Singhal M, Fee S, Flotte T et al. (2009). Melanocytic nevus-like hyperplasia and melanoma in transgenic BRAFV600E mice. Oncogene 28: 2289–2298.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goel VK, Lazar AJ, Warneke CL, Redston MS, Haluska FG . (2006). Examination of mutations in BRAF, NRAS, and PTEN in primary cutaneous melanoma. J Invest Dermatol 126: 154–160.

    CAS  PubMed  Google Scholar 

  • Golding SE, Rosenberg E, Neill S, Dent P, Povirk LF, Valerie K . (2007). Extracellular signal-related kinase positively regulates ataxia telangiectasia mutated, homologous recombination repair, and the DNA damage response. Cancer Res 67: 1046–1053.

    CAS  PubMed  Google Scholar 

  • Goueli BS, Janknecht R . (2004). Upregulation of the catalytic telomerase subunit by the transcription factor ER81 and oncogenic HER2/Neu, Ras, or Raf. Mol Cell Biol 24: 25–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Granovsky AE, Rosner MR . (2008). Raf kinase inhibitory protein: a signal transduction modulator and metastasis suppressor. Cell Res 18: 452–457.

    CAS  PubMed  Google Scholar 

  • Gray-Schopfer VC, Cheong SC, Chong H, Chow J, Moss T, Abdel-Malek ZA et al. (2006). Cellular senescence in naevi and immortalisation in melanoma: a role for p16? Br J Cancer 95: 496–505.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Han JA, Kim JI, Ongusaha PP, Hwang DH, Ballou LR, Mahale A et al. (2002). p53-mediated induction of Cox-2 counteracts p53- or genotoxic stress-induced apoptosis. EMBO J 21: 5635–5644.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hanahan D, Weinberg RA . (2000). The hallmarks of cancer. Cell 100: 57–70.

    CAS  PubMed  Google Scholar 

  • Hatzivassiliou G, Song K, Yen I, Brandhuber BJ, Anderson DJ, Alvarado R et al. (2010). RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature 464: 431–435.

    CAS  PubMed  Google Scholar 

  • Heidorn SJ, Milagre C, Whittaker S, Nourry A, Niculescu-Duvas I, Dhomen N et al. (2010). Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell 140: 209–221.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hood JD, Bednarski M, Frausto R, Guccione S, Reisfeld RA, Xiang R et al. (2002). Tumor regression by targeted gene delivery to the neovasculature. Science 296: 2404–2407.

    CAS  PubMed  Google Scholar 

  • Hwang YH, Choi JY, Kim S, Chung ES, Kim T, Koh SS et al. (2004). Overexpression of c-raf-1 proto-oncogene in liver cirrhosis and hepatocellular carcinoma. Hepatol Res 29: 113–121.

    CAS  PubMed  Google Scholar 

  • Janda E, Lehmann K, Killisch I, Jechlinger M, Herzig M, Downward J et al. (2002). Ras and TGF(beta) cooperatively regulate epithelial cell plasticity and metastasis: dissection of Ras signaling pathways. J Cell Biol 156: 299–313.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johannessen CM, Boehm JS, Kim SY, Thomas SR, Wardwell L, Johnson LA et al. (2010). COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature 468: 968–972.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jones DT, Kocialkowski S, Liu L, Pearson DM, Backlund LM, Ichimura K et al. (2008). Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas. Cancer Res 68: 8673–8677.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jones DT, Kocialkowski S, Liu L, Pearson DM, Ichimura K, Collins VP . (2009). Oncogenic RAF1 rearrangement and a novel BRAF mutation as alternatives to KIAA1549:BRAF fusion in activating the MAPK pathway in pilocytic astrocytoma. Oncogene 28: 2119–2123.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Joseph EW, Pratilas CA, Poulikakos PI, Tadi M, Wang W, Taylor BS et al. (2010). The RAF inhibitor PLX4032 inhibits ERK signaling and tumor cell proliferation in a V600E BRAF-selective manner. Proc Natl Acad Sci USA 107: 14903–14908.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kamata T, Hussain J, Giblett S, Hayward R, Marais R, Pritchard C . (2010). BRAF inactivation drives aneuploidy by deregulating CRAF. Cancer Res 70: 8475–8486.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Karreth FA, DeNicola GM, Winter SP, Tuveson DA . (2009). C-Raf inhibits MAPK activation and transformation by B-RafV600E. Mol Cell 36: 477–486.

    CAS  PubMed  Google Scholar 

  • Kasid U, Pfeifer A, Brennan T, Beckett M, Weichselbaum RR, Dritschilo A et al. (1989). Effect of antisense c-raf-1 on tumorigenicity and radiation sensitivity of a human squamous carcinoma. Science 243: 1354–1356.

    CAS  PubMed  Google Scholar 

  • Kasid U, Pfeifer A, Weichselbaum RR, Dritschilo A, Mark GE . (1987). The raf oncogene is associated with a radiation-resistant human laryngeal cancer. Science 237: 1039–1041.

    CAS  PubMed  Google Scholar 

  • Kasid U, Suy S, Dent P, Ray S, Whiteside TL, Sturgill TW . (1996). Activation of Raf by ionizing radiation. Nature 382: 813–816.

    CAS  PubMed  Google Scholar 

  • Kefford R, Arkenau H, Brown MP, Millward M, Infante JR, Long GV et al. (2010). Phase I/II study of GSK2118436, a selective inhibitor of oncogenic mutant BRAF kinase, in patients with metastatic melanoma and other solid tumors. ASCO Meeting Abstracts 28: 8503.

    Google Scholar 

  • Kerkhoff E, Fedorov LM, Siefken R, Walter AO, Papadopoulos T, Rapp UR . (2000). Lung-targeted expression of the c-Raf-1 kinase in transgenic mice exposes a novel oncogenic character of the wild-type protein. Cell Growth Differ 11: 185–190.

    CAS  PubMed  Google Scholar 

  • Kessenbrock K, Plaks V, Werb Z . (2010). Matrix metalloproteinases: regulators of the Tumor Microenvironment. Cell 141: 52–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kinkade R, Dasgupta P, Carie A, Pernazza D, Carless M, Pillai S et al. (2008). A small molecule disruptor of Rb/Raf-1 interaction inhibits cell proliferation, angiogenesis, and growth of human tumor xenografts in nude mice. Cancer Res 68: 3810–3818.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klein RM, Spofford LS, Abel EV, Ortiz A, Aplin AE . (2008). B-RAF regulation of Rnd3 participates in actin cytoskeletal and focal adhesion organization. Mol Biol Cell 19: 498–508.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kolch W . (2005). Coordinating ERK/MAPK signalling through scaffolds and inhibitors. Nat Rev Mol Cell Biol 6: 827–837.

    CAS  PubMed  Google Scholar 

  • Kramer BW, Gotz R, Rapp UR . (2004). Use of mitogenic cascade blockers for treatment of C-Raf induced lung adenoma in vivo: CI-1040 strongly reduces growth and improves lung structure. BMC Cancer 4: 24.

    PubMed  PubMed Central  Google Scholar 

  • Kroemer G, Pouyssegur J . (2008). Tumor cell metabolism: cancer's Achilles’ heel. Cancer Cell 13: 472–482.

    CAS  PubMed  Google Scholar 

  • Kumar SM, Yu H, Edwards R, Chen L, Kazianis S, Brafford P et al. (2007). Mutant V600E BRAF increases hypoxia inducible factor-1alpha expression in melanoma. Cancer Res 67: 3177–3184.

    CAS  PubMed  Google Scholar 

  • Kuznetsov AV, Smigelskaite J, Doblander C, Janakiraman M, Hermann M, Wurm M et al. (2008). Survival signaling by C-RAF: mitochondrial reactive oxygen species and Ca2+ are critical targets. Mol Cell Biol 28: 2304–2313.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lehmann K, Janda E, Pierreux CE, Rytomaa M, Schulze A, McMahon M et al. (2000). Raf induces TGFbeta production while blocking its apoptotic but not invasive responses: a mechanism leading to increased malignancy in epithelial cells. Genes Dev 14: 2610–2622.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liang S, Sharma A, Peng HH, Robertson G, Dong C . (2007). Targeting mutant (V600E) B-Raf in melanoma interrupts immunoediting of leukocyte functions and melanoma extravasation. Cancer Res 67: 5814–5820.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luo J, Solimini NL, Elledge SJ . (2009). Principles of cancer therapy: oncogene and non-oncogene addiction. Cell 136: 823–837.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lyustikman Y, Momota H, Pao W, Holland EC . (2008). Constitutive activation of Raf-1 induces glioma formation in mice. Neoplasia 10: 501–510.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marx M, Eychene A, Laugier D, Bechade C, Crisanti P, Dezelee P et al. (1988). A novel oncogene related to c-mil is transduced in chicken neuroretina cells induced to proliferate by infection with an avian lymphomatosis virus. EMBO J 7: 3369–3373.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matallanas D, Romano D, Yee K, Meissl K, Kucerova L, Piazzolla D et al. (2007). RASSF1A elicits apoptosis through an MST2 pathway directing proapoptotic transcription by the p73 tumor suppressor protein. Mol Cell 27: 962–975.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matos P, Oliveira C, Velho S, Goncalves V, da Costa LT, Moyer MP et al. (2008). B-Raf(V600E) cooperates with alternative spliced Rac1b to sustain colorectal cancer cell survival. Gastroenterology 135: 899–906.

    CAS  PubMed  Google Scholar 

  • McKay MM, Morrison DK . (2007). Integrating signals from RTKs to ERK/MAPK. Oncogene 26: 3113–3121.

    CAS  PubMed  Google Scholar 

  • Michaloglou C, Vredeveld LC, Soengas MS, Denoyelle C, Kuilman T, van der Horst CM et al. (2005). BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 436: 720–724.

    CAS  PubMed  Google Scholar 

  • Mitsutake N, Knauf JA, Mitsutake S, Mesa Jr C, Zhang L, Fagin JA . (2005). Conditional BRAFV600E expression induces DNA synthesis, apoptosis, dedifferentiation, and chromosomal instability in thyroid PCCL3 cells. Cancer Res 65: 2465–2473.

    CAS  PubMed  Google Scholar 

  • Moelling K, Heimann B, Beimling P, Rapp UR, Sander T . (1984). Serine- and threonine-specific protein kinase activities of purified gag-mil and gag-raf proteins. Nature 312: 558–561.

    CAS  PubMed  Google Scholar 

  • Nazarian R, Shi H, Wang Q, Kong X, Koya RC, Lee H et al. (2010). Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature 468: 973–977.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Negrini S, Gorgoulis VG, Halazonetis TD . (2010). Genomic instability—an evolving hallmark of cancer. Nat Rev Mol Cell Biol 11: 220–228.

    CAS  PubMed  Google Scholar 

  • Niault TS, Baccarini M . (2010). Targets of Raf in tumorigenesis. Carcinogenesis 31: 1165–1174.

    CAS  PubMed  Google Scholar 

  • O'Neill E, Rushworth L, Baccarini M, Kolch W . (2004). Role of the kinase MST2 in suppression of apoptosis by the proto-oncogene product Raf-1. Science 306: 2267–2270.

    CAS  PubMed  Google Scholar 

  • Old WM, Shabb JB, Houel S, Wang H, Couts KL, Yen CY et al. (2009). Functional proteomics identifies targets of phosphorylation by B-Raf signaling in melanoma. Mol Cell 34: 115–131.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Palanisamy N, Ateeq B, Kalyana-Sundaram S, Pflueger D, Ramnarayanan K, Shankar S et al. (2010). Rearrangements of the RAF kinase pathway in prostate cancer, gastric cancer and melanoma. Nat Med 16: 793–798.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Park BJ, Park JI, Byun DS, Park JH, Chi SG . (2000). Mitogenic conversion of transforming growth factor-beta1 effect by oncogenic Ha-Ras-induced activation of the mitogen-activated protein kinase signaling pathway in human prostate cancer. Cancer Res 60: 3031–3038.

    CAS  PubMed  Google Scholar 

  • Pfister S, Janzarik WG, Remke M, Ernst A, Werft W, Becker N et al. (2008). BRAF gene duplication constitutes a mechanism of MAPK pathway activation in low-grade astrocytomas. J Clin Invest 118: 1739–1749.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Piazzolla D, Meissl K, Kucerova L, Rubiolo C, Baccarini M . (2005). Raf-1 sets the threshold of Fas sensitivity by modulating Rok-{alpha} signaling. J Cell Biol 171: 1013–1022.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Polzien L, Baljuls A, Rennefahrt UE, Fischer A, Schmitz W, Zahedi RP et al. (2009). Identification of novel in vivo phosphorylation sites of the human proapoptotic protein BAD: pore-forming activity of BAD is regulated by phosphorylation. J Biol Chem 284: 28004–28020.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Poulikakos PI, Rosen N . (2011). Mutant BRAF melanomas—dependence and resistance. Cancer Cell 19: 11–15.

    CAS  PubMed  Google Scholar 

  • Poulikakos PI, Zhang C, Bollag G, Shokat KM, Rosen N . (2010). RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature 464: 427–430.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pratilas CA, Taylor BS, Ye Q, Viale A, Sander C, Solit DB et al. (2009). (V600E)BRAF is associated with disabled feedback inhibition of RAF–MEK signaling and elevated transcriptional output of the pathway. Proc Natl Acad Sci USA 106: 4519–4524.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pritchard CA, Hayes L, Wojnowski L, Zimmer A, Marais RM, Norman JC . (2004). B-Raf acts via the ROCKII/LIMK/cofilin pathway to maintain actin stress fibers in fibroblasts. Mol Cell Biol 24: 5937–5952.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pritchard CA, Samuels ML, Bosch E, McMahon M . (1995). Conditionally oncogenic forms of the A-Raf and B-Raf protein kinases display different biological and biochemical properties in NIH 3T3 cells. Mol Cell Biol 15: 6430–6442.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Puzanov I, Burnett P, Flaherty KT . (2011). Biological challenges of BRAF inhibitor therapy. Mol Oncol 5.: 116–123.

    PubMed  PubMed Central  Google Scholar 

  • Rajakulendran T, Sahmi M, Lefrancois M, Sicheri F, Therrien M . (2009). A dimerization-dependent mechanism drives RAF catalytic activation. Nature 461: 542–545.

    CAS  PubMed  Google Scholar 

  • Rapp UR, Goldsborough MD, Mark GE, Bonner TI, Groffen J, Reynolds Jr FH et al. (1983). Structure and biological activity of v-raf, a unique oncogene transduced by a retrovirus. Proc Natl Acad Sci USA 80: 4218–4222.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ravi RK, Weber E, McMahon M, Williams JR, Baylin S, Mal A et al. (1998). Activated Raf-1 causes growth arrest in human small cell lung cancer cells. J Clin Invest 101: 153–159.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ries S, Biederer C, Woods D, Shifman O, Shirasawa S, Sasazuki T et al. (2000). Opposing effects of Ras on p53: transcriptional activation of mdm2 and induction of p19ARF. Cell 103: 321–330.

    CAS  PubMed  Google Scholar 

  • Riesco-Eizaguirre G, Rodriguez I, De la Vieja A, Costamagna E, Carrasco N, Nistal M et al. (2009). The BRAFV600E oncogene induces transforming growth factor beta secretion leading to sodium iodide symporter repression and increased malignancy in thyroid cancer. Cancer Res 69: 8317–8325.

    CAS  PubMed  Google Scholar 

  • Ritt DA, Monson DM, Specht SI, Morrison DK . (2010). Impact of feedback phosphorylation and Raf heterodimerization on normal and mutant B-Raf signaling. Mol Cell Biol 30: 806–819.

    CAS  PubMed  Google Scholar 

  • Riva C, Lavieille JP, Reyt E, Brambilla E, Lunardi J, Brambilla C . (1995). Differential c-myc, c-jun, c-raf and p53 expression in squamous cell carcinoma of the head and neck: implication in drug and radioresistance. Eur J Cancer B Oral Oncol 31: 384–391.

    Google Scholar 

  • Robert C, Arnault JP, Mateus C . (2010). RAF inhibition and induction of cutaneous squamous cell carcinoma. Curr Opin Oncol 23: 177–182.

    Google Scholar 

  • Roper E, Weinberg W, Watt FM, Land H . (2001). p19ARF-independent induction of p53 and cell cycle arrest by Raf in murine keratinocytes. EMBO Rep 2: 145–150.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rushworth LK, Hindley AD, O'Neill E, Kolch W . (2006). Regulation and role of Raf-1/B-Raf heterodimerization. Mol Cell Biol 26: 2262–2272.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sahai E, Marshall CJ . (2003). Differing modes of tumour cell invasion have distinct requirements for Rho/ROCK signalling and extracellular proteolysis. Nat Cell Biol 5: 711–719.

    CAS  PubMed  Google Scholar 

  • Schulze A, Lehmann K, Jefferies HB, McMahon M, Downward J . (2001). Analysis of the transcriptional program induced by Raf in epithelial cells. Genes Dev 15: 981–994.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schulze A, Nicke B, Warne PH, Tomlinson S, Downward J . (2004). The transcriptional response to raf activation is almost completely dependent on mitogen-activated protein kinase kinase activity and shows a major autocrine component. Mol Biol Cell 15: 3450–3463.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Seoane J . (2008). The TGFBeta pathway as a therapeutic target in cancer. Clin Transl Oncol 10: 14–19.

    CAS  PubMed  Google Scholar 

  • Sewing A, Wiseman B, Lloyd AC, Land H . (1997). High-intensity Raf signal causes cell cycle arrest mediated by p21Cip1. Mol Cell Biol 17: 5588–5597.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma A, Tran MA, Liang S, Sharma AK, Amin S, Smith CD et al. (2006). Targeting mitogen-activated protein kinase/extracellular signal-regulated kinase kinase in the mutant (V600E) B-Raf signaling cascade effectively inhibits melanoma lung metastases. Cancer Res 66: 8200–8209.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma A, Trivedi NR, Zimmerman MA, Tuveson DA, Smith CD, Robertson GP . (2005). Mutant V599EB-Raf regulates growth and vascular development of malignant melanoma tumors. Cancer Res 65: 2412–2421.

    CAS  PubMed  Google Scholar 

  • Shimizu K, Nakatsu Y, Nomoto S, Sekiguchi M . (1986). Structure of the activated c-raf-1 gene from human stomach cancer. Princess Takamatsu Symp 17: 85–91.

    CAS  PubMed  Google Scholar 

  • Simon R, Richter J, Wagner U, Fijan A, Bruderer J, Schmid U et al. (2001). High-throughput tissue microarray analysis of 3p25 (RAF1) and 8p12 (FGFR1) copy number alterations in urinary bladder cancer. Cancer Res 61: 4514–4519.

    CAS  PubMed  Google Scholar 

  • Smyth MJ, Dunn GP, Schreiber RD . (2006). Cancer immunosurveillance and immunoediting: the roles of immunity in suppressing tumor development and shaping tumor immunogenicity. Adv Immunol 90: 1–50.

    CAS  PubMed  Google Scholar 

  • Sobczak I, Galabova-Kovacs G, Sadzak I, Kren A, Christofori G, Baccarini M . (2008). B-Raf is required for ERK activation and tumor progression in a mouse model of pancreatic beta-cell carcinogenesis. Oncogene 27: 4779–4787.

    CAS  PubMed  Google Scholar 

  • Sumimoto H, Imabayashi F, Iwata T, Kawakami Y . (2006). The BRAF–MAPK signaling pathway is essential for cancer-immune evasion in human melanoma cells. J Exp Med 203: 1651–1656.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takezawa K, Okamoto I, Yonesaka K, Hatashita E, Yamada Y, Fukuoka M et al. (2009). Sorafenib inhibits non-small cell lung cancer cell growth by targeting B-RAF in KRAS wild-type cells and C-RAF in KRAS mutant cells. Cancer Res 69: 6515–6521.

    CAS  PubMed  Google Scholar 

  • Tidyman WE, Rauen KA . (2009). The RASopathies: developmental syndromes of Ras/MAPK pathway dysregulation. Curr Opin Genet Dev 19: 230–236.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Troppmair J, Hartkamp J, Rapp UR . (1998). Activation of NF-kappa B by oncogenic Raf in HEK 293 cells occurs through autocrine recruitment of the stress kinase cascade. Oncogene 17: 685–690.

    CAS  PubMed  Google Scholar 

  • Tsai J, Lee JT, Wang W, Zhang J, Cho H, Mamo S et al. (2008). Discovery of a selective inhibitor of oncogenic B-Raf kinase with potent antimelanoma activity. Proc Natl Acad Sci USA 105: 3041–3046.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vale T, Ngo TT, White MA, Lipsky PE . (2001). Raf-induced transformation requires an interleukin 1 autocrine loop. Cancer Res 61: 602–607.

    CAS  PubMed  Google Scholar 

  • Villanueva J, Vultur A, Lee JT, Somasundaram R, Fukunaga-Kalabis M, Cipolla AK et al. (2010). Acquired resistance to BRAF inhibitors mediated by a RAF kinase switch in melanoma can be overcome by cotargeting MEK and IGF-1R/PI3K. Cancer Cell 18: 683–695.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S, Ghosh RN, Chellappan SP . (1998). Raf-1 physically interacts with Rb and regulates its function: a link between mitogenic signaling and cell cycle regulation. Mol Cell Biol 18: 7487–7498.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Thomson SR, Starkey JD, Page JL, Ealy AD, Johnson SE . (2004). Transforming growth factor {beta}1 is upregulated by activated Raf in skeletal myoblasts but does not contribute to the differentiation-defective phenotype. J Biol Chem 279: 2528–2534.

    CAS  PubMed  Google Scholar 

  • Wang ZY, Chen Z . (2008). Acute promyelocytic leukemia: from highly fatal to highly curable. Blood 111: 2505–2515.

    CAS  PubMed  Google Scholar 

  • Weber CK, Slupsky JR, Kalmes HA, Rapp UR . (2001). Active Ras induces heterodimerization of cRaf and BRaf. Cancer Res 61: 3595–3598.

    CAS  PubMed  Google Scholar 

  • Weisberg E, Manley PW, Cowan-Jacob SW, Hochhaus A, Griffin JD . (2007). Second generation inhibitors of BCR-ABL for the treatment of imatinib-resistant chronic myeloid leukaemia. Nat Rev Cancer 7: 345–356.

    CAS  PubMed  Google Scholar 

  • Wellbrock C, Karasarides M, Marais R . (2004). The RAF proteins take centre stage. Nat Rev Mol Cell Biol 5: 875–885.

    CAS  PubMed  Google Scholar 

  • Wimmer R, Baccarini M . (2010). Partner exchange: protein–protein interactions in the Raf pathway. Trends Biochem Sci 35: 660–668.

    CAS  PubMed  Google Scholar 

  • Woods D, Parry D, Cherwinski H, Bosch E, Lees E, McMahon M . (1997). Raf-induced proliferation or cell cycle arrest is determined by the level of Raf activity with arrest mediated by p21Cip1. Mol Cell Biol 17: 5598–5611.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yagoda N, von Rechenberg M, Zaganjor E, Bauer AJ, Yang WS, Fridman DJ et al. (2007). RAS–RAF–MEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature 447: 864–868.

    PubMed  PubMed Central  Google Scholar 

  • Yu H, McDaid R, Lee J, Possik P, Li L, Kumar SM et al. (2009). The role of BRAF mutation and p53 inactivation during transformation of a subpopulation of primary human melanocytes. Am J Pathol 174: 2367–2377.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zebisch A, Haller M, Hiden K, Goebel T, Hoefler G, Troppmair J et al. (2009). Loss of RAF kinase inhibitor protein is a somatic event in the pathogenesis of therapy-related acute myeloid leukemias with C-RAF germline mutations. Leukemia 23: 1049–1053.

    CAS  PubMed  Google Scholar 

  • Zebisch A, Staber PB, Delavar A, Bodner C, Hiden K, Fischereder K et al. (2006). Two transforming C-RAF germline mutations identified in patients with therapy-related acute myeloid leukemia. Cancer Res 66: 3401–3408.

    CAS  PubMed  Google Scholar 

  • Zeng L, Imamoto A, Rosner MR . (2008). Raf kinase inhibitory protein (RKIP): a physiological regulator and future therapeutic target. Expert Opin Ther Targets 12: 1275–1287.

    CAS  PubMed  Google Scholar 

  • Zheng B, Jeong JH, Asara JM, Yuan Y-Y, Granter SR, Chin L et al. (2009). Oncogenic B-RAF negatively regulates the tumor suppressor LKB1 to promote melanoma cell proliferation. Mol Cell 33: 237–247.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J, Woods D, McMahon M, Bishop JM . (1998). Senescence of human fibroblasts induced by oncogenic Raf. Genes Dev 12: 2997–3007.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhuang D, Mannava S, Grachtchouk V, Tang WH, Patil S, Wawrzyniak JA et al. (2008). C-MYC overexpression is required for continuous suppression of oncogene-induced senescence in melanoma cells. Oncogene 27: 6623–6634.

    CAS  PubMed  Google Scholar 

  • Zitvogel L, Tesniere A, Kroemer G . (2006). Cancer despite immunosurveillance: immunoselection and immunosubversion. Nat Rev Immunol 6: 715–727.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all the members of the Baccarini lab for helpful discussions and apologize to all the colleagues whose work could not be cited in this review for reasons of space. The Baccarini lab is supported by the Austrian Scientific Research Fund (Grants P19530 and SFB 021) and the European Community (Grants INFLA-CARE and GROWTHSTOP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Baccarini.

Ethics declarations

Competing interests

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maurer, G., Tarkowski, B. & Baccarini, M. Raf kinases in cancer–roles and therapeutic opportunities. Oncogene 30, 3477–3488 (2011). https://doi.org/10.1038/onc.2011.160

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.160

Keywords

This article is cited by

Search

Quick links