Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Shikonin and its analogs inhibit cancer cell glycolysis by targeting tumor pyruvate kinase-M2

Abstract

We recently reported that shikonin and its analogs were a class of necroptotic inducers that could bypass cancer drug resistance. However, the molecular targets of shikonin are not known. Here, we showed that shikonin and its analogs are inhibitors of tumor-specific pyruvate kinase-M2 (PKM2), among which shikonin and its enantiomeric isomer alkannin were the most potent and showed promising selectivity, that is, shikonin and alkannin at concentrations that resulted in over 50% inhibition of PKM2 activity did not inhibit PKM1 and pyruvate kinase-L (PKL). Shikonin and alkannin significantly inhibited the glycolytic rate, as manifested by cellular lactate production and glucose consumption in drug-sensitive and resistant cancer cell lines (MCF-7, MCF-7/Adr, MCF-7/Bcl-2, MCF-7/Bcl-xL and A549) that primarily express PKM2. HeLa cells transfected with PKM1 showed reduced sensitivity to shikonin- or alkannin-induced cell death. To the best of our knowledge, shikonin and alkannin are the most potent and specific inhibitors to PKM2 reported so far. As PKM2 universally expresses in cancer cells and dictates the last rate-limiting step of glycolysis vital for cancer cell proliferation and survival, enantiomeric shikonin and alkannin may have potential in future clinical application.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  • Ahn BZ, Baik KU, Kweon GR, Lim K, Hwang BD . (1995). Acylshikonin analogues: synthesis and inhibition of DNA topoisomerase-I. J Med Chem 38: 1044–1047.

    Article  CAS  Google Scholar 

  • Altenberg B, Greulich KO . (2004). Genes of glycolysis are ubiquitously overexpressed in 24 cancer classes. Genomics 84: 1014–1020.

    Article  CAS  Google Scholar 

  • Anderson SR, Florini JR, Vestling CS . (1964). Rat liver lactate dehydrogenase. 3. Kinetics and specificity. J Biol Chem 239: 2991–2997.

    CAS  PubMed  Google Scholar 

  • Bailly C . (2000). Topoisomerase I poisons and suppressors as anticancer drugs. Curr Med Chem 7: 20.

    Article  Google Scholar 

  • Christofk HR, Vander Heiden MG, Harris MH, Ramanathan A, Gerszten RE, Wei R et al. (2008). The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 452: 230–233.

    Article  CAS  Google Scholar 

  • DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB . (2008). The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 7: 11–20.

    Article  CAS  Google Scholar 

  • Degterev A, Huang Z, Boyce M, Li Y, Jagtap P, Mizushima N et al. (2005). Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 1: 112–119.

    Article  CAS  Google Scholar 

  • Degterev A, Hitomi J, Germscheid M, Ch′en IL, Korkina O, Teng X et al. (2008). Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat Chem Biol 4: 313–321.

    Article  CAS  Google Scholar 

  • Dombrauckas JD, Santarsiero BD, Mesecar AD . (2005). Structural basis for tumor pyruvate kinase M2 allosteric regulation and catalysis. Biochemistry 44: 9417–9429.

    Article  CAS  Google Scholar 

  • Gatenby RA, Gillies RJ . (2004). Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4: 891–899.

    Article  CAS  Google Scholar 

  • Guo XP, Zhang XY, Zhang SD . (1991). [Clinical trial on the effects of shikonin mixture on later stage lung cancer]. Zhong Xi Yi Jie He Za Zhi 11: 598–599, 580.

    CAS  PubMed  Google Scholar 

  • Han W, Li L, Qiu S, Lu Q, Pan Q, Gu Y et al. (2007). Shikonin circumvents cancer drug resistance by induction of a necroptotic death. Mol Cancer Ther 6: 1641–1649.

    Article  CAS  Google Scholar 

  • Han W, Xie J, Li L, Liu Z, Hu X . (2009). Necrostatin-1 reverts shikonin-induced necroptosis to apoptosis. Apoptosis 14: 674–686.

    Article  CAS  Google Scholar 

  • Hirayama A, Kami K, Sugimoto M, Sugawara M, Toki N, Onozuka H et al. (2009). Quantitative metabolome profiling of colon and stomach cancer microenvironment by capillary electrophoresis time-of-flight mass spectrometry. Cancer Res 69: 4918–4925.

    Article  CAS  Google Scholar 

  • Hitomi J, Christofferson DE, Ng A, Yao J, Degterev A, Xavier RJ et al. (2008). Identification of a molecular signaling network that regulates a cellular necrotic cell death pathway. Cell 135: 1311–1323.

    Article  CAS  Google Scholar 

  • Hsu PP, Sabatini DM . (2008). Cancer cell metabolism: Warburg and beyond. Cell 134: 703–707.

    Article  CAS  Google Scholar 

  • Hu X, Xuan Y . (2008). Bypassing cancer drug resistance by activating multiple death pathways—a proposal from the study of circumventing cancer drug resistance by induction of necroptosis. Cancer Lett 259: 127–137.

    Article  CAS  Google Scholar 

  • Ibsen KH . (1977). Interrelationships and functions of the pyruvate kinase isozymes and their variant forms: a review. Cancer Res 37: 341–353.

    CAS  PubMed  Google Scholar 

  • Ikeda Y, Noguchi T . (1998). Allosteric regulation of pyruvate kinase M2 isozyme involves a cysteine residue in the intersubunit contact. J Biol Chem 273: 12227–12233.

    Article  CAS  Google Scholar 

  • Imamura K, Tanaka T, Nishina T, Nakashima K, Miwa S . (1973). Studies on pyruvate kinase (PK) deficiency. II. Electrophoretic, kinetic and immunological studies on pyruvate kinase of erythrocytes and other tissues. J Biochem 74: 1165–1175.

    Article  CAS  Google Scholar 

  • Jurica MS, Mesecar A, Heath PJ, Shi W, Nowak T, Stoddard BL . (1998). The allosteric regulation of pyruvate kinase by fructose-1,6-bisphosphate. Structure 6: 195–210.

    Article  CAS  Google Scholar 

  • Kim SH, Kang IC, Yoon TJ, Park YM, Kang KS, Song GY et al. (2001). Antitumor activities of a newly synthesized shikonin derivative, 2-hyim-DMNQ-S-33. Cancer Lett 172: 171–175.

    Article  CAS  Google Scholar 

  • Li L, Han W, Gu Y, Qiu S, Lu Q, Jin J et al. (2007). Honokiol induces a necrotic cell death through the mitochondrial permeability transition pore. Cancer Res 67: 4894–4903.

    Article  CAS  Google Scholar 

  • Liu K, Lu H, Hou L, Qi Z, Teixeira C, Barbault F et al. (2008). Design, synthesis, and biological evaluation of N-carboxyphenylpyrrole derivatives as potent HIV fusion inhibitors targeting gp41. J Med Chem 51: 7843–7854.

    Article  CAS  Google Scholar 

  • Masuda Y, Nishida A, Hori K, Hirabayashi T, Kajimoto S, Nakajo S et al. (2003). Beta-hydroxyisovalerylshikonin induces apoptosis in human leukemia cells by inhibiting the activity of a polo-like kinase 1 (PLK1). Oncogene 22: 1012–1023.

    Article  CAS  Google Scholar 

  • Masuda Y, Shima G, Aiuchi T, Horie M, Hori K, Nakajo S et al. (2004). Involvement of tumor necrosis factor receptor-associated protein 1 (TRAP1) in apoptosis induced by beta-hydroxyisovalerylshikonin. J Biol Chem 279: 42503–42515.

    Article  CAS  Google Scholar 

  • Mazurek S . (2007). Pyruvate kinase type M2: a key regulator within the tumour metabolome and a tool for metabolic profiling of tumours. Ernst Schering Found Symp Proc 4: 99–124.

    Google Scholar 

  • Mazurek S, Boschek CB, Hugo F, Eigenbrodt E . (2005). Pyruvate kinase type M2 and its role in tumor growth and spreading. Semin Cancer Biol 15: 300–308.

    Article  CAS  Google Scholar 

  • Mazurek S, Eigenbrodt E . (2003). The tumor metabolome. Anticancer Res 23: 1149–1154.

    CAS  PubMed  Google Scholar 

  • Mazurek S, Grimm H, Boschek CB, Vaupel P, Eigenbrodt E . (2002). Pyruvate kinase type M2: a crossroad in the tumor metabolome. Br J Nutr 87 (Suppl 1): S23–S29.

    Article  CAS  Google Scholar 

  • Nakaya K, Miyasaka T . (2003). A shikonin derivative, beta-hydroxyisovalerylshikonin, is an ATP-non-competitive inhibitor of protein tyrosine kinases. Anticancer Drugs 14: 683–693.

    Article  CAS  Google Scholar 

  • Noguchi T, Inoue H, Tanaka T . (1986). The M1- and M2-type isozymes of rat pyruvate kinase are produced from the same gene by alternative RNA splicing. J Biol Chem 261: 13807–13812.

    CAS  PubMed  Google Scholar 

  • Noguchi T, Yamada K, Inoue H, Matsuda T, Tanaka T . (1987). The L- and R-type isozymes of rat pyruvate kinase are produced from a single gene by use of different promoters. J Biol Chem 262: 14366–14371.

    CAS  PubMed  Google Scholar 

  • Papageorgiou VP AA, Couladouros EA, Hepworth D, Nicolaou KC. . (1999). The chemistry and biology of alkannin, shikonin, and related naphthazarin natural products. Angewandte Chemie International Edition 38: 32.

    Article  Google Scholar 

  • Parkison C, Ashizawa K, McPhie P, Lin K, Cheng S . (1991). The monomer of pyruvate kinase, subtype M1, is both a kinase and a cytosolic thyroid hormone binding protein. Biochem Biophys Res Commun 179: 668–674.

    Article  CAS  Google Scholar 

  • Shimada N, Shinagawa T, Ishii S . (2008). Modulation of M2-type pyruvate kinase activity by the cytoplasmic PML tumor suppressor protein. Genes Cells 13: 245–254.

    Article  CAS  Google Scholar 

  • Spoden GA, Mazurek S, Morandell D, Bacher N, Ausserlechner MJ, Jansen-Durr P et al. (2008). Isotype-specific inhibitors of the glycolytic key regulator pyruvate kinase subtype M2 moderately decelerate tumor cell proliferation. Int J Cancer 123: 312–321.

    Article  CAS  Google Scholar 

  • Spoden GA, Rostek U, Lechner S, Mitterberger M, Mazurek S, Zwerschke W . (2009). Pyruvate kinase isoenzyme M2 is a glycolytic sensor differentially regulating cell proliferation, cell size and apoptotic cell death dependent on glucose supply. Exp Cell Res 315: 2765–2774.

    Article  CAS  Google Scholar 

  • Vander Heiden MG, Cantley LC, Thompson CB . (2009). Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324: 1029–1033.

    Article  CAS  Google Scholar 

  • Vander Heiden MG, Christofk HR, Schuman E, Subtelny AO, Sharfi H, Harlow EE et al. (2010). Identification of small molecule inhibitors of pyruvate kinase M2. Biochem Pharmacol 79: 1118–1124.

    Article  CAS  Google Scholar 

  • Warburg O . (1956). On the origin of cancer cells. Science 123: 309–314.

    Article  CAS  Google Scholar 

  • Xuan Y, Hu X . (2009). Naturally-occurring shikonin analogues—a class of necroptotic inducers that circumvent cancer drug resistance. Cancer Lett 274: 233–242.

    Article  CAS  Google Scholar 

  • Yang H, Zhou P, Huang H, Chen D, Ma N, Cui QC et al. (2009). Shikonin exerts antitumor activity via proteasome inhibition and cell death induction in vitro and in vivo. Int J Cancer 124: 2450–2459.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank BPS Bioscience Inc (San Diego, CA, USA) for technical support of their product—recombinant human PKM2. This work was supported in part by the China National 863 project (2007AA02Z143) to XH; China Natural Sciences Foundation projects (30772544, 81071802) to XH and the Fundamental Research Funds for the Central Universities, National Ministry of Education, China, to XH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X Hu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, J., Xie, J., Jiang, Z. et al. Shikonin and its analogs inhibit cancer cell glycolysis by targeting tumor pyruvate kinase-M2. Oncogene 30, 4297–4306 (2011). https://doi.org/10.1038/onc.2011.137

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.137

Keywords

This article is cited by

Search

Quick links