Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

MSX2 is an oncogenic downstream target of activated WNT signaling in ovarian endometrioid adenocarcinoma

Abstract

Ovarian endometrioid adenocarcinomas (OEAs) frequently exhibit constitutive activation of canonical WNT signaling, usually as a result of oncogenic mutations that stabilize and dysregulate the β-catenin protein. In previous work, we used microarray-based methods to compare gene expression in OEAs with and without dysregulated β-catenin as a strategy for identifying novel β-catenin/TCF target genes with important roles in ovarian cancer pathogenesis. Among the genes highlighted by the microarray studies was MSX2, which encodes a homeobox transcription factor. We found MSX2 expression was markedly increased in primary human and murine OEAs with dysregulated β-catenin compared with OEAs with intact β-catenin regulation. WNT pathway activation by WNT3a ligand or GSK3β inhibitor treatment potently induced MSX2 and ectopic expression of a dominant negative form of TCF4 inhibited MSX2 expression in ovarian cancer cells. Chromatin immunoprecipitation studies demonstrated that β-catenin/TCF directly regulates MSX2 expression via binding to TCF binding elements in multiple regions of the MSX2 gene. Notably, ectopic MSX2 expression was found to promote neoplastic transformation of the rodent RK3E model epithelial cell line and to enhance the invasiveness of immortalized human ovarian epithelial cells in vitro and ovarian carcinoma cells in vivo. Inhibition of endogenous MSX2 expression in ovarian endometrioid cancer cells carrying a β-catenin mutation using shRNA approaches inhibited neoplastic properties of the cells in vitro and in vivo. Expression of MSX2 in selected ovarian carcinoma cells induced changes suggestive of epithelial-mesenchymal transition (EMT), but based on analysis of ovarian cell lines and primary tumor tissues, effects of MSX2 on EMT appear to be complex and context-dependent. Our findings indicate MSX2 is a direct downstream transcriptional target of β-catenin/TCF and has a key contributing role in the cancer phenotype of OEAs carrying WNT/β-catenin pathway defects.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  • Bendall AJ, Abate-Shen C . (2000). Roles for Msx and Dlx homeoproteins in vertebrate development. Gene 247: 17–31.

    Article  CAS  PubMed  Google Scholar 

  • Bommer GT, Feng Y, Iura A, Giordano TJ, Kuick R, Kadikoy H et al. (2010). IRS1 regulation by Wnt/beta-catenin signaling and varied contribution of IRS1 to the neoplastic phenotype. J Biol Chem 285: 1928–1938.

    Article  CAS  PubMed  Google Scholar 

  • Catasus L, Bussaglia E, Rodrguez I, Gallardo A, Pons C, Irving JA et al. (2004). Molecular genetic alterations in endometrioid carcinomas of the ovary: similar frequency of beta-catenin abnormalities but lower rate of microsatellite instability and PTEN alterations than in uterine endometrioid carcinomas. Hum Pathol 35: 1360–1368.

    Article  CAS  PubMed  Google Scholar 

  • Chamorro MN, Schwartz DR, Vonica A, Brivanlou AH, Cho KR, Varmus HE . (2005). FGF-20 and DKK1 are transcriptional targets of beta-catenin and FGF-20 is implicated in cancer and development. EMBO J 24: 73–84.

    Article  CAS  PubMed  Google Scholar 

  • Cheng W, Liu J, Yoshida H, Rosen D, Naora H . (2005). Lineage infidelity of epithelial ovarian cancers is controlled by HOX genes that specify regional identity in the reproductive tract. Nat Med 11: 531–537.

    Article  CAS  PubMed  Google Scholar 

  • Coghlan MP, Culbert AA, Cross DA, Corcoran SL, Yates JW, Pearce NJ et al. (2000). Selective small molecule inhibitors of glycogen synthase kinase-3 modulate glycogen metabolism and gene transcription. Chem Biol 7: 793–803.

    Article  CAS  PubMed  Google Scholar 

  • di Bari MG, Ginsburg E, Plant J, Strizzi L, Salomon DS, Vonderhaar BK . (2009). Msx2 induces epithelial-mesenchymal transition in mouse mammary epithelial cells through upregulation of Cripto-1. J Cell Physiol 219: 659–666.

    Article  CAS  PubMed  Google Scholar 

  • Dinulescu DM, Ince TA, Quade BJ, Shafer SA, Crowley D, Jacks T . (2005). Role of K-ras and Pten in the development of mouse models of endometriosis and endometrioid ovarian cancer. Nat Med 11: 63–70.

    Article  CAS  PubMed  Google Scholar 

  • Dodig M, Tadic T, Kronenberg MS, Dacic S, Liu YH, Maxson R et al. (1999). Ectopic Msx2 overexpression inhibits and Msx2 antisense stimulates calvarial osteoblast differentiation. Dev Biol 209: 298–307.

    Article  CAS  PubMed  Google Scholar 

  • Gamallo C, Palacios J, Moreno G, Calvo de Mora J, Suarez A, Armas A . (1999). beta-catenin expression pattern in stage I and II ovarian carcinomas: relationship with beta-catenin gene Mutations, Clinicopathological features, and clinical outcome. Amer J Path 155: 527–536.

    Article  CAS  PubMed  Google Scholar 

  • Hendrix ND, Wu R, Kuick R, Schwartz DR, Fearon ER, Cho KR . (2006). Fibroblast growth factor 9 has oncogenic activity and is a downstream target of Wnt signaling in ovarian endometrioid adenocarcinomas. Cancer Res 66: 1354–1362.

    Article  CAS  PubMed  Google Scholar 

  • Hussein SM, Duff EK, Sirard C . (2003). Smad4 and beta-catenin co-activators functionally interact with lymphoid-enhancing factor to regulate graded expression of Msx2. J Biol Chem 278: 48805–48814.

    Article  CAS  PubMed  Google Scholar 

  • Jho EH, Zhang T, Domon C, Joo CK, Freund JN, Costantini F . (2002). Wnt/beta-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Mol Cell Biol 22: 1172–1183.

    Article  CAS  PubMed  Google Scholar 

  • Jiang TX, Liu YH, Widelitz RB, Kundu RK, Maxson RE, Chuong CM . (1999). Epidermal dysplasia and abnormal hair follicles in transgenic mice overexpressing homeobox gene MSX-2. J Invest Dermatol 113: 230–237.

    Article  CAS  PubMed  Google Scholar 

  • Kolligs FT, Hu G, Dang CV, Fearon ER . (1999). Neoplastic transformation of RK3E by mutant beta-catenin requires deregulation of Tcf/Lef transcription but not activation of c-myc expression. Mol Cell Biol 19: 5696–5706.

    Article  CAS  PubMed  Google Scholar 

  • Kolligs FT, Nieman MT, Winer I, Hu G, Van Mater D, Feng Y et al. (2002). ITF-2, a downstream target of the Wnt/TCF pathway, is activated in human cancers with beta-catenin defects and promotes neoplastic transformation. Cancer Cell 1: 145–155.

    Article  CAS  PubMed  Google Scholar 

  • Kuo KT, Mao TL, Jones S, Veras E, Ayhan A, Wang TL et al. (2009). Frequent activating mutations of PIK3CA in ovarian clear cell carcinoma. Am J Pathol 174: 1597–1601.

    Article  CAS  PubMed  Google Scholar 

  • Leung JY, Kolligs FT, Wu R, Zhai Y, Kuick R, Hanash S et al. (2002). Activation of AXIN2 expression by beta-catenin-T cell factor. A feedback repressor pathway regulating Wnt signaling. J Biol Chem 277: 21657–21665.

    Article  CAS  PubMed  Google Scholar 

  • Parker DS, Ni YY, Chang JL, Li J, Cadigan KM . (2008). Wingless signaling induces widespread chromatin remodeling of target loci. Mol Cell Biol 28: 1815–1828.

    Article  CAS  PubMed  Google Scholar 

  • Ramos C, Robert B . (2005). msh/Msx gene family in neural development. Trends Genet 21: 624–632.

    Article  CAS  PubMed  Google Scholar 

  • Sagae S, Kobayashi K, Nishioka Y, Sugimura M, Ishioka S, Nagata M et al. (1999). Mutational analysis of beta-catenin gene in Japanese ovarian carcinomas: frequent mutations in endometrioid carcinomas. Jpn J Cancer Res 90: 510–515.

    Article  CAS  PubMed  Google Scholar 

  • Satoh K, Ginsburg E, Vonderhaar BK . (2004). Msx-1 and Msx-2 in mammary gland development. J Mammary Gland Biol Neoplasia 9: 195–205.

    Article  PubMed  Google Scholar 

  • Satoh K, Hamada S, Kimura K, Kanno A, Hirota M, Umino J et al. (2008). Up-regulation of MSX2 enhances the malignant phenotype and is associated with twist 1 expression in human pancreatic cancer cells. Am J Pathol 172: 926–939.

    Article  CAS  PubMed  Google Scholar 

  • Satokata I, Ma L, Ohshima H, Bei M, Woo I, Nishizawa K et al. (2000). Msx2 deficiency in mice causes pleiotropic defects in bone growth and ectodermal organ formation. Nat Genet 24: 391–395.

    Article  CAS  PubMed  Google Scholar 

  • Schwartz DR, Kardia SL, Shedden KA, Kuick R, Michailidis G, Taylor JM et al. (2002). Gene expression in ovarian cancer reflects both morphology and biological behavior, distinguishing clear cell from other poor-prognosis ovarian carcinomas. Cancer Res 62: 4722–4729.

    CAS  PubMed  Google Scholar 

  • Schwartz DR, Wu R, Kardia SL, Levin AM, Huang CC, Shedden KA et al. (2003). Novel candidate targets of beta-catenin/T-cell factor signaling identified by gene expression profiling of ovarian endometrioid adenocarcinomas. Cancer Res 63: 2913–2922.

    CAS  PubMed  Google Scholar 

  • Shah N, Sukumar S . (2010). The Hox genes and their roles in oncogenesis. Nat Rev Cancer 10: 361–371.

    Article  CAS  PubMed  Google Scholar 

  • Shao JS, Cheng SL, Pingsterhaus JM, Charlton-Kachigian N, Loewy AP, Towler DA . (2005). Msx2 promotes cardiovascular calcification by activating paracrine Wnt signals. J Clin Invest 115: 1210–1220.

    Article  CAS  PubMed  Google Scholar 

  • Song L, Li Y, Wang K, Wang YZ, Molotkov A, Gao L et al. (2009). Lrp6-mediated canonical Wnt signaling is required for lip formation and fusion. Development 136: 3161–3171.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki M, Tanaka M, Iwase T, Naito Y, Sugimura H, Kino I . (1993). Over-expression of HOX-8, the human homologue of the mouse Hox-8 homeobox gene, in human tumors. Biochem Biophys Res Commun 194: 187–193.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi C, Akiyama N, Matsuzaki T, Takai S, Kitayama H, Noda M . (1996). Characterization of a human MSX-2 cDNA and its fragment isolated as a transformation suppressor gene against v-Ki-ras oncogene. Oncogene 12: 2137–2146.

    CAS  PubMed  Google Scholar 

  • Whyte DB, Holbeck SL . (2006). Correlation of PIK3Ca mutations with gene expression and drug sensitivity in NCI-60 cell lines. Biochem Biophys Res Commun 340: 469–475.

    Article  CAS  PubMed  Google Scholar 

  • Willert J, Epping M, Pollack JR, Brown PO, Nusse R . (2002). A transcriptional response to Wnt protein in human embryonic carcinoma cells. BMC Dev Biol 2: 8.

    Article  PubMed  Google Scholar 

  • Wright K, Wilson P, Morland S, Campbell I, Walsh M, Hurst T et al. (1999). beta-catenin mutation and expression analysis in ovarian cancer: exon 3 mutations and nuclear translocation in 16% of endometrioid tumours. Int J Cancer 82: 625–629.

    Article  CAS  PubMed  Google Scholar 

  • Wu R, Hendrix-Lucas N, Kuick R, Zhai Y, Schwartz DR, Akyol A et al. (2007). Mouse model of human ovarian endometrioid adenocarcinoma based on somatic defects in the Wnt/B-catanin and PI3K/Pten signaling pathways. Cancer Cell 11: 321–333.

    Article  CAS  PubMed  Google Scholar 

  • Wu R, Zhai Y, Fearon ER, Cho KR . (2001). Diverse Mechanisms of beta-Catenin Deregulation in Ovarian Endometrioid Adenocarcinomas. Cancer Res 61: 8247–8255.

    CAS  PubMed  Google Scholar 

  • Zhai Y, Kuick R, Nan B, Ota I, Weiss SJ, Trimble CL et al. (2007). Gene expression analysis of preinvasive and invasive cervical squamous cell carcinomas identifies HOXC10 as a key mediator of invasion. Cancer Res 67: 10163–10172.

    Article  CAS  PubMed  Google Scholar 

  • Zhai Y, Wu R, Schwartz DR, Darrah D, Reed H, Kolligs FT et al. (2002). Role of beta-catenin/T-cell factor-regulated genes in ovarian endometrioid adenocarcinomas. Am J Pathol 160: 1229–1238.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank Rork Kuick for assistance in analyzing the microarray data from human and mouse tissue samples. This work was supported by grants from the National Cancer Institute (RO1 CA94172 and RO1 CA85463).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K R Cho.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhai, Y., Iura, A., Yeasmin, S. et al. MSX2 is an oncogenic downstream target of activated WNT signaling in ovarian endometrioid adenocarcinoma. Oncogene 30, 4152–4162 (2011). https://doi.org/10.1038/onc.2011.123

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.123

Keywords

This article is cited by

Search

Quick links