Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Phosphorylation of histone H3 serine 28 modulates RNA polymerase III-dependent transcription

Abstract

Deregulation of RNA polymerase III (Pol III) transcription enhances cellular tRNAs and 5S rRNA production, leading to an increase in translational capacity to promote cell proliferation, transformation and tumor formation. Phosphorylation of histone H3 (H3ph) is induced by tumor promoters (EGF, UV and TPA) and immediate early genes, such as c-myc, c-jun and c-fos. However, it remains to be determined whether H3ph is involved in RNA Pol III transcription. Here, we report that EGF strongly induced H3ph at serine 28 (H3S28ph). EGF significantly increased transcription of RNA Pol III-dependent genes (Pol III genes), tRNALeu, tRNATyr, 5S rRNA and 7SL RNA. Inhibition of EGFR, but not PI3K, reduced both H3S28ph and tRNALeu and 5S rRNA transcription. EGF enhanced occupancy of H3S28ph in the promoters of tRNALeu and 5S rRNA. Further analysis indicates that EGF augmented cellular levels of protein and mRNA of TFIIIB subunits, Brf1 and TATA box-binding protein (TBP). Brf1 is a specific transcription factor for RNA Pol III genes. EGF enhanced occupancy of H3S28ph in the Brf1 and TBP promoters. Inhibition of H3S28ph by mutant H3S28A repressed Brf1, TBP and tRNALeu and 5S rRNA expression and decreased occupancy of H3S28ph in their promoters. Reduction of Brf1 significantly decreased tRNALeu and 5S rRNA transcription and repressed EGF-induced anchorage-independent growth. Blocking H3S28ph signaling by using mutant H3S28A reduced EGF-induced cell transformation. Together, these results indicate that EGF activates EGFR signaling to induce H3S28ph, which, in turn, upregulates tRNALeu and 5S rRNA transcription through Brf1 and TBP and promotes cell transformation. The studies demonstrate that epigenetic modification of H3S28ph has a critical role in the activity of Pol III genes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Barski A, Chepelev I, Liko D, Cuddapah S, Fleming AB, Birch J et al. (2010). Pol II and its associated epigenetic marks are present at Pol III-transcribed noncoding RNA genes. Nat Struct Mol Biol 17: 629–634.

    Article  CAS  Google Scholar 

  • Brunmeir R, Lagger S, Simboeck E, Sawicka A, Egger G, Hagelkruys A et al. (2010). Epigenetic regulation of a murine retrotransposon by a dual histone modification mark. PLoS Genet 6: e1000927.

    Article  Google Scholar 

  • Chen N, Ma WY, She QB, Wu E, Liu G, Bode AM et al. (2001). Transactivation of the epidermal growth factor receptor is involved in 12-O-tetradecanoylphorbol-13-acetate-induced signal transduction. J Biol Chem 276: 46722–46728.

    Article  CAS  Google Scholar 

  • Cheung P, Tanner KG, Cheung WL, Sassone-Corsi P, Denu JM, Allis CD . (2000). Synergistic coupling of histone H3 phosphorylation and acetylation in response to epidermal growth factor stimulation. Mol Cell 5: 905–915.

    Article  CAS  Google Scholar 

  • Crighton D, Woiwode A, Zhang C, Mandavia N, Morton JP, Warnock LJ et al. (2003). p53 represses RNA polymerase III transcription by targeting TBP and inhibiting promoter occupancy by TFIIIB. EMBO J 22: 2810–2820.

    Article  CAS  Google Scholar 

  • Dieci G, Fiorino G, Castelnuovo M, Teichmann M, Pagano A . (2007). The expanding RNA polymerase III transcriptome. Trends Genet 23: 614–622.

    Article  CAS  Google Scholar 

  • Felsenfeld G, Groudine M . (2003). Controlling the double helix. Nature 421: 448–453.

    Article  Google Scholar 

  • Finnin MS, Donigian JR, Cohen A, Richon VM, Rifkind RA, Marks PA et al. (1999). Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature 401: 188–193.

    Article  CAS  Google Scholar 

  • Gehani SS, Agrawal-Singh S, Dietrich N, Christophersen NS, Helin K, Hansen K . (2010). Polycomb group protein displacement and gene activation through MSK-dependent H3K27me3S28 phosphorylation. Mol Cell 39: 886–900.

    Article  CAS  Google Scholar 

  • Goodfellow SJ, Innes F, Derblay LE, MacLellan WR, Scott PH, White RJ . (2006). Regulation of RNA polymerase III transcription during hypertrophic growth. EMBO J 25: 1522–1533.

    Article  CAS  Google Scholar 

  • Goto H, Tomono Y, Ajiro K, Kosako H, Fujita M, Sakurai M et al. (1999). Identification of a novel phosphorylation site on histone H3 coupled with mitotic chromosome condensation J. Biol Chem 274: 25543–25549.

    Article  CAS  Google Scholar 

  • Jenuwein T, Allis CD . (2001). Translating the histone code. Science 293: 1074–1080.

    Article  CAS  Google Scholar 

  • Johnson DL, Johnson SA . (2008). Cell biology. RNA metabolism and oncogenesis. Science 320: 461–462.

    Article  CAS  Google Scholar 

  • Johnson SA, Dubeau L, Johnson DL . (2008). Enhanced RNA polymerase III-dependent transcription is required for oncogenic transformation. J Biol Chem 283: 19184–19191.

    Article  CAS  Google Scholar 

  • Kenneth NS, Ramsbottom BA, Gomez-Roman N, Marshall L, Cole PA, White RJ . (2007). TRRAP and GCN5 are used by c-Myc to activate RNA polymerase III transcription. Proc Natl Acad Sci USA 104: 14917–14922.

    Article  CAS  Google Scholar 

  • Kijima M, Yoshida M, Sugita K, Horinouchi S, Beppu T . (1993). Trapoxin, an antitumor cyclic tetrapeptide, is an irreversible inhibitor of mammalian histone deacetylase. J Biol Chem 268: 22429–22435.

    CAS  PubMed  Google Scholar 

  • Kim HG, Lee KW, Cho YY, Kang NJ, Oh SM, Bode AM et al. (2008). Mitogen- and stress-activated kinase 1-mediated histone H3 phosphorylation is crucial for cell transformation. Cancer Res 68: 2538–2547.

    Article  CAS  Google Scholar 

  • Marshall L, Kenneth N, White R . (2008). Elevated tRNA(iMet) synthesis can drive cell proliferation and oncogenic transformation. Cell 133: 78–89.

    Article  CAS  Google Scholar 

  • Metzger E, Imhof A, Patel D, Kahl P, Hoffmeyer K, Friedrichs N et al. (2010). Phosphorylation of histone H3T6 by PKCbeta(I) controls demethylation at histone H3K4. Nature 464: 792–796.

    Article  CAS  Google Scholar 

  • Moqtaderi Z, Wang J, Raha D, White RJ, Snyder M, Weng Z et al. (2010). Genomic binding profiles of functionally distinct RNA polymerase III transcription complexes in human cells. Nat Struct Mol Biol 17: 635–640.

    Article  CAS  Google Scholar 

  • Oler AJ, Alla RK, Roberts DN, Wong A, Hollenhorst PC, Chandler KJ et al. (2010). Human RNA polymerase III transcriptomes and relationships to Pol II promoter chromatin and enhancer-binding factors. Nat Struct Mol Biol 17: 620–628.

    Article  CAS  Google Scholar 

  • Raha D, Wang Z, Moqtaderi Z, Wu L, Zhong G, Gerstein M et al. (2010). Close association of RNA polymerase II and many transcription factors with Pol III genes. Proc Natl Acad Sci USA 107: 3639–3644.

    Article  CAS  Google Scholar 

  • Shimada M, Nakadai T, Fukuda A, Hisatake K . (2010). cAMP-response element-binding protein (CREB) controls MSK1-mediated phosphorylation of histone H3 at the c-fos promoter in vitro. J Biol Chem 285: 9390–9401.

    Article  CAS  Google Scholar 

  • Struhl K, Moqtaderi Z . (1998). The TAFs in the HAT. Cell 94: 1–4.

    Article  CAS  Google Scholar 

  • Ullu E, Tschudi C . (1984). Alu sequences are processed 7SL RNA genes. Nature 312: 171–172.

    Article  CAS  Google Scholar 

  • Wang F, Dai J, Daum JR, Niedzialkowska E, Banerjee B, Stukenberg PT et al. (2010). Histone H3 Thr-3 phosphorylation by haspin positions Aurora B at centromeres in mitosis. Science 330: 231–235.

    Article  CAS  Google Scholar 

  • Wei Y, Yu L, Bowen J, Gorovsky M, Allis CD . (1999). Phosphorylation of histone H3 Is required for proper chromosome condensation and segregation. Cell 97: 99–109.

    Article  CAS  Google Scholar 

  • White RJ . (2004). RNA polymerase III transcription and cancer. Oncogene 23: 3208–3216.

    Article  CAS  Google Scholar 

  • Winter A, Sourvinos G, Allison S, Tosh K, Scott P, Spandidos D et al. (2000). RNA polymerase III transcription factor TFIIIC2 is overexpressed in ovarian tumors. Proc Natl Acad Sci USA 97: 12619–12624.

    Article  CAS  Google Scholar 

  • Woiwode A, Johnson SA, Zhong S, Zhang C, Roeder RG, Teichmann M et al. (2008). PTEN represses RNA polymerase III-dependent transcription by targeting the TFIIIB complex. Mol Cell Biol 28: 4204–4214.

    Article  CAS  Google Scholar 

  • Yoshida M, Horinouchi S . (1999). Trichostatin and leptomycin. Inhibition of histone deacetylation and signal-dependent nuclear export. Ann N Y Acad Sci 886: 23–36.

    Article  CAS  Google Scholar 

  • Zhong S, Goto H, Inagaki M, Dong Z . (2003). Phosphorylation of histone H3 at serine 28 and acetylation of histone H3 at lysine 9 induced by TSA. Oncogene 22: 5291–5297.

    Article  CAS  Google Scholar 

  • Zhong S, Jansen C, Goto H, Inagaki M, Dong Z . (2001a). Ultraviolet B-induced phosphorylation of histone H3 at serine 28 mediated by MSK1. J Biol Chem 276: 33213–33219.

    Article  CAS  Google Scholar 

  • Zhong S, Johnson DL . (2009). The JNKs differentially regulate RNA polymerase III transcription by coordinately modulating the expression of all TFIIIB subunits. Proc Natl Acad Sci USA 106: 12682–12687.

    Article  CAS  Google Scholar 

  • Zhong S, Ma WY, Dong Z . (2000). ERKs and p38 kinases directly mediate UVB-induced phosphorylation of H3 at serine 10. J Biol Chem 275: 20980–20984.

    Article  CAS  Google Scholar 

  • Zhong S, Zhang Y, Goto H, Inagaki M, Dong Z . (2001b). MAP kinases mediated UVB-induced phosphorylation of histone H3 at serine 28. J Biol Chem 276: 12932–12937.

    Article  CAS  Google Scholar 

  • Zhong S, Zheng C, Johnson DL . (2004). Epidermal Growth Factor enhances cellular TBP levels and induces RNA polymerase I- and III-dependent gene activity. Mol Cell Biol 24: 5119–5129.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We want to thank DL, Johnson and MR Stallcup (University of Southern California) for scientific discussions. We would like to thank Z Dong (University of Minnesota) and C Huang (University of New York) who provided cell lines. This work was supported by National Institutes of Health grants AA017288 to SZ and DK025836-26 to DL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Zhong.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Q., Zhong, Q., Evans, A. et al. Phosphorylation of histone H3 serine 28 modulates RNA polymerase III-dependent transcription. Oncogene 30, 3943–3952 (2011). https://doi.org/10.1038/onc.2011.105

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.105

Keywords

Search

Quick links