Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

TXNIP potentiates Redd1-induced mTOR suppression through stabilization of Redd1

Abstract

The mammalian target of rapamycin (mTOR) is a highly conserved serine–threonine kinase activated in response to growth factors and nutrients. Because of frequent dysregulation of the mTOR signaling pathway in diverse human cancers, this kinase is a key therapeutic target. Redd1 is a negative regulator of mTOR, mediating dissociation of 14-3-3 from tuberous sclerosis complex (TSC)2, which allows formation of a TSC–TSC2 complex. In the present study, we identify TXNIP that inhibits mTOR activity by binding to and stabilizing Redd1 protein. Redd1 and TXNIP expression was induced by a synthetic glucose analog, 2-deoxyglucose (2-DG). Moreover, Redd1 expression in response to 2-DG was regulated by activating transcription factor 4 (ATF4). Overexpression of TXNIP was associated with reduced mTOR activity mediated by an increase in Redd1 level, whereas knockdown of TXNIP using small interfering RNA resulted in recovery of mTOR activity via downregulation of Redd1 during treatment with 2-DG. Interestingly, Redd1 was additionally stabilized via interactions with N-terminal-truncated TXNIP, leading to suppression of mTOR activity. Our results collectively demonstrate that TXNIP stabilizes Redd1 protein induced by ATF4 in response to 2-DG, resulting in potentiation of mTOR suppression. To the best of our knowledge, this is the first study to identify TXNIP as a novel member of the mTOR upstream that acts as a negative regulator in response to stress signals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  • Brugarolas J, Lei K, Hurley RL, Manning BD, Reiling JH, Hafen E et al. (2004). Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Genes Dev 18: 2893–2904.

    Article  CAS  Google Scholar 

  • Chung JW, Jeon JH, Yoon SR, Choi I . (2006). Vitamin D3 upregulated protein 1 (VDUP1) is a regulator for redox signaling and stress-mediated diseases. J Dermatol 33: 662–669.

    Article  CAS  Google Scholar 

  • Dennis PB, Jaeschke A, Saitoh M, Fowler B, Kozma SC, Thomas G . (2001). Mammalian TOR: a homeostatic ATP sensor. Science 294: 1102–1105.

    Article  CAS  Google Scholar 

  • DeYoung MP, Horak P, Sofer A, Sgroi D, Ellisen LW . (2008). Hypoxia regulates TSC1/2-mTOR signaling and tumor suppression through REDD1-mediated 14-3-3 shuttling. Genes Dev 22: 239–251.

    Article  CAS  Google Scholar 

  • Ellisen LW, Ramsayer KD, Johannessen CM, Yang A, Beppu H, Minda K et al. (2002). REDD1, a developmentally regulated transcriptional target of p63 and p53, links p63 to regulation of reactive oxygen species. Mol Cell 10: 995–1005.

    Article  CAS  Google Scholar 

  • Fidler IJ, Radinsky R . (1996). Search for genes that suppress cancer metastasis. J Natl Cancer Inst 88: 1700–1703.

    Article  CAS  Google Scholar 

  • Goldberg SF, Miele ME, Hatta N, Takata M, Paquette-Straub C, Freedman LP et al. (2003). Melanoma metastasis suppression by chromosome 6: evidence for a pathway regulated by CRSP3 and TXNIP. Cancer Res 63: 432–440.

    CAS  PubMed  Google Scholar 

  • Han SH, Jeon JH, Ju HR, Jung U, Kim KY, Yoo HS et al. (2003). VDUP1 upregulated by TGF-beta1 and 1,25-dihydorxyvitamin D3 inhibits tumor cell growth by blocking cell-cycle progression. Oncogene 22: 4035–4046.

    Article  CAS  Google Scholar 

  • Hardie DG, Hawley SA . (2001). AMP-activated protein kinase: the energy charge hypothesis revisited. Bioessays 23: 1112–1119.

    Article  CAS  Google Scholar 

  • Hawley SA, Davison M, Woods A, Davies SP, Beri RK, Carling D et al. (1996). Characterization of the AMP-activated protein kinase from rat liver and identification of threonine 172 as the major site at which it phosphorylates AMP-activated protein kinase. J Biol Chem 271: 27879–27887.

    Article  CAS  Google Scholar 

  • Horak P, Crawford AR, Vadysirisack DD, Nash ZM, DeYoung MP, Sgroi D et al. (2010). Negative feedback control of HIF-1 through REDD1-regulated ROS suppresses tumorigenesis. Proc Natl Acad Sci USA 107: 4675–4680.

    Article  CAS  Google Scholar 

  • Inoki K, Zhu T, Guan KL . (2003). TSC2 mediates cellular energy response to control cell growth and survival. Cell 115: 577–590.

    Article  CAS  Google Scholar 

  • Jin HO, Seo SK, Woo SH, Choe TB, Hong SI, Kim JI et al. (2009a). Nuclear protein 1 induced by ATF4 in response to various stressors acts as a positive regulator on the transcriptional activation of ATF4. IUBMB Life 61: 1153–1158.

    Article  CAS  Google Scholar 

  • Jin HO, Seo SK, Woo SH, Kim ES, Lee HC, Yoo DH et al. (2009b). Activating transcription factor 4 and CCAAT/enhancer-binding protein-beta negatively regulate the mammalian target of rapamycin via Redd1 expression in response to oxidative and endoplasmic reticulum stress. Free Radic Biol Med 46: 1158–1167.

    Article  CAS  Google Scholar 

  • Junn E, Han SH, Im JY, Yang Y, Cho EW, Um HD et al. (2000). Vitamin D3 up-regulated protein 1 mediates oxidative stress via suppressing the thioredoxin function. J Immunol 164: 6287–6295.

    Article  CAS  Google Scholar 

  • Kang HT, Hwang ES . (2006). 2-Deoxyglucose: an anticancer and antiviral therapeutic, but not any more a low glucose mimetic. Life Sci 78: 1392–1399.

    Article  CAS  Google Scholar 

  • Katiyar S, Liu E, Knutzen CA, Lang ES, Lombardo CR, Sankar S et al. (2009). REDD1, an inhibitor of mTOR signalling, is regulated by the CUL4A-DDB1 ubiquitin ligase. EMBO Rep 10: 866–872.

    Article  CAS  Google Scholar 

  • Kim KY, Shin SM, Kim JK, Paik SG, Yang Y, Choi I . (2004). Heat shock factor regulates VDUP1 gene expression. Biochem Biophys Res Commun 315: 369–375.

    Article  CAS  Google Scholar 

  • Little E, Ramakrishnan M, Roy B, Gazit G, Lee AS . (1994). The glucose-regulated proteins (GRP78 and GRP94): functions, gene regulation, and applications. Crit Rev Eukaryot Gene Expr 4: 1–18.

    Article  Google Scholar 

  • Nakamura H, Masutani H, Yodoi J . (2006). Extracellular thioredoxin and thioredoxin-binding protein 2 in control of cancer. Semin Cancer Biol 16: 444–451.

    Article  CAS  Google Scholar 

  • Nishinaka Y, Masutani H, Oka S, Matsuo Y, Yamaguchi Y, Nishio K et al. (2004). Importin alpha1 (Rch1) mediates nuclear translocation of thioredoxin-binding protein-2/vitamin D(3)-up-regulated protein 1. J Biol Chem 279: 37559–37565.

    Article  CAS  Google Scholar 

  • Oka S, Liu W, Masutani H, Hirata H, Shinkai Y, Yamada S et al. (2006). Impaired fatty acid utilization in thioredoxin binding-2 (TBP-2)-deficient mice: a unique animal model of Reye syndrome. FASEB J 20: 121–123.

    Article  CAS  Google Scholar 

  • Peterson TR, Laplante M, Thoreen CC, Sancak Y, Kang SA, Kuehl WM et al. (2009). DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell 137: 873–886.

    Article  CAS  Google Scholar 

  • Saxena G, Chen J, Shalev A . (2010). Intracellular shuttling and mitochondrial function of thioredoxin-interacting protein. J Biol Chem 285: 3997–4005.

    Article  CAS  Google Scholar 

  • Schmelzle T, Hall MN . (2000). TOR, a central controller of cell growth. Cell 103: 253–262.

    Article  CAS  Google Scholar 

  • Schneider A, Younis RH, Gutkind JS . (2008). Hypoxia-induced energy stress inhibits the mTOR pathway by activating an AMPK/REDD1 signaling axis in head and neck squamous cell carcinoma. Neoplasia 10: 1295–1302.

    Article  CAS  Google Scholar 

  • Schulze PC, De Keulenaer GW, Yoshioka J, Kassik KA, Lee RT . (2002). Vitamin D3-upregulated protein-1 (VDUP-1) regulates redox-dependent vascular smooth muscle cell proliferation through interaction with thioredoxin. Circ Res 91: 689–695.

    Article  CAS  Google Scholar 

  • Schulze PC, Yoshioka J, Takahashi T, He Z, King GL, Lee RT . (2004). Hyperglycemia promotes oxidative stress through inhibition of thioredoxin function by thioredoxin-interacting protein. J Biol Chem 279: 30369–30374.

    Article  CAS  Google Scholar 

  • Shaw RJ, Lamia KA, Vasquez D, Koo SH, Bardeesy N, Depinho RA et al. (2005). The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 310: 1642–1646.

    Article  CAS  Google Scholar 

  • Sheth SS, Bodnar JS, Ghazalpour A, Thipphavong CK, Tsutsumi S, Tward AD et al. (2006). Hepatocellular carcinoma in Txnip-deficient mice. Oncogene 25: 3528–3536.

    Article  CAS  Google Scholar 

  • Shor B, Gibbons JJ, Abraham RT, Yu K . (2009). Targeting mTOR globally in cancer: thinking beyond rapamycin. Cell Cycle 8: 3831–3837.

    Article  CAS  Google Scholar 

  • Sofer A, Lei K, Johannessen CM, Ellisen LW . (2005). Regulation of mTOR and cell growth in response to energy stress by REDD1. Mol Cell Biol 25: 5834–5845.

    Article  CAS  Google Scholar 

  • Stein SC, Woods A, Jones NA, Davison MD, Carling D . (2000). The regulation of AMP-activated protein kinase by phosphorylation. Biochem J 345: 437–443.

    Article  CAS  Google Scholar 

  • Stoltzman CA, Peterson CW, Breen KT, Muoio DM, Billin AN, Ayer DE . (2008). Glucose sensing by MondoA:Mlx complexes: a role for hexokinases and direct regulation of thioredoxin-interacting protein expression. Proc Natl AcadSci USA 105: 6912–6917.

    Article  CAS  Google Scholar 

  • Sudarsanam S, Johnson DE . (2010). Functional consequences of mTOR inhibition. Curr Opin Drug Discov Devel 13: 31–40.

    CAS  PubMed  Google Scholar 

  • Towler MC, Hardie DG . (2007). AMP-activated protein kinase in metabolic control and insulin signaling. Circ Res 100: 328–341.

    Article  CAS  Google Scholar 

  • Vander Haar E, Lee SI, Bandhakavi S, Griffin TJ, Kim DH . (2007). Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat Cell Biol 9: 316–323.

    Article  CAS  Google Scholar 

  • Wang H, Kubica N, Ellisen LW, Jefferson LS, Kimball SR . (2006a). Dexamethasone represses signaling through the mammalian target of rapamycin in muscle cells by enhancing expression of REDD1. J Biol Chem 281: 39128–39134.

    Article  CAS  Google Scholar 

  • Wang Z, Rong YP, Malone MH, Davis MC, Zhong F, Distelhorst CW . (2006b). Thioredoxin-interacting protein (txnip) is a glucocorticoid-regulated primary response gene involved in mediating glucocorticoid-induced apoptosis. Oncogene 25: 1903–1913.

    Article  CAS  Google Scholar 

  • Whitney ML, Jefferson LS, Kimball SR . (2009). ATF4 is necessary and sufficient for ER stress-induced upregulation of REDD1 expression. Biochem Biophys Res Commun 379: 451–455.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Nuclear R&D Program and the Basic Science Research Program and the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0009503) in Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to H-O Jin or I-C Park.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, HO., Seo, SK., Kim, YS. et al. TXNIP potentiates Redd1-induced mTOR suppression through stabilization of Redd1. Oncogene 30, 3792–3801 (2011). https://doi.org/10.1038/onc.2011.102

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.102

Keywords

This article is cited by

Search

Quick links