Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

ARF1 controls proliferation of breast cancer cells by regulating the retinoblastoma protein

Abstract

The ADP-ribosylation factors (ARFs) 1 and 6 are small GTP-binding proteins, highly expressed and activated in several breast cancer cell lines and are associated with enhanced migration and invasiveness. In this study, we report that ARF1 has a critical role in cell proliferation. Depletion of this GTPase or expression of a dominant negative form, which both resulted in diminished ARF1 activity, led to sustained cell-growth arrest. This cellular response was associated with the induction of senescent markers in highly invasive breast cancer cells as well as in control mammary epithelial cells by a mechanism regulating retinoblastoma protein (pRB) function. When examining the role of ARF1, we found that this GTPase was highly activated in normal proliferative conditions, and that a limited amount could be found in the nucleus, associated with the chromatin of MDA-MB-231 cells. However, when cells were arrested in the G0/G1 phase or transfected with a dominant negative form of ARF1, the total level of activated ARF1 was markedly reduced and the GTPase significantly enriched in the chromatin. Using biochemical approaches, we demonstrated that the GDP-bound form of ARF1 directly interacted with pRB, but not other members of this family of proteins. In addition, depletion of ARF1 or expression of ARF1T31N resulted in the constitutive association of pRB and E2F1, thereby stabilizing the interaction of E2F1 as well as pRB at endogenous sites of target gene promoters, preventing expression of E2F target genes, such as cyclin D1, Mcm6 and E2F1, important for cell-cycle progression. These novel findings provide direct physiological and molecular evidence for the role of ARF1 in controlling cell proliferation, dependent on its ability to regulate pRB/E2F1 activity and gene expression for enhanced proliferation and breast cancer progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Altan-Bonnet N, Phair RD, Polishchuk RS, Weigert R, Lippincott-Schwartz J . (2003). A role for Arf1 in mitotic Golgi disassembly, chromosome segregation, and cytokinesis. Proc Natl Acad Sci USA 100: 13314–13319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azab AK, Azab F, Blotta S, Pitsillides CM, Thompson B, Runnels JM et al. (2009). RhoA and Rac1 GTPases play major and differential roles in stromal cell-derived factor-1-induced cell adhesion and chemotaxis in multiple myeloma. Blood 114: 619–629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartholomew JN, Volonte D, Galbiati F . (2009). Caveolin-1 regulates the antagonistic pleiotropic properties of cellular senescence through a novel Mdm2/p53-mediated pathway. Cancer Res 69: 2878–2886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beausejour CM, Krtolica A, Galimi F, Narita M, Lowe SW, Yaswen P et al. (2003). Reversal of human cellular senescence: roles of the p53 and p16 pathways. Embo J 22: 4212–4222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boulay PL, Cotton M, Melancon P, Claing A . (2008). ADP-ribosylation factor 1 controls the activation of the phosphatidylinositol 3-kinase pathway to regulate epidermal growth factor-dependent growth and migration of breast cancer cells. J Biol Chem 283: 36425–36434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyer SN, Wazer DE, Band V . (1996). E7 protein of human papilloma virus-16 induces degradation of retinoblastoma protein through the ubiquitin-proteasome pathway. Cancer Res 56: 4620–4624.

    CAS  PubMed  Google Scholar 

  • Burkhart DL, Sage J . (2008). Cellular mechanisms of tumour suppression by the retinoblastoma gene. Nat Rev Cancer 8: 671–682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chellappan S, Kraus VB, Kroger B, Munger K, Howley PM, Phelps WC et al. (1992). Adenovirus E1A, simian virus 40 tumor antigen, and human papillomavirus E7 protein share the capacity to disrupt the interaction between transcription factor E2F and the retinoblastoma gene product. Proc Natl Acad Sci USA 89: 4549–4553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chicas A, Wang X, Zhang C, McCurrach M, Zhao Z, Mert O et al. (2010). Dissecting the unique role of the retinoblastoma tumor suppressor during cellular senescence. Cancer Cell 17: 376–387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen LA, Honda A, Varnai P, Brown FD, Balla T, Donaldson JG . (2007). Active Arf6 recruits ARNO/cytohesin GEFs to the PM by binding their PH domains. Mol Biol Cell 18: 2244–2253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cotton M, Boulay PL, Houndolo T, Vitale N, Pitcher JA, Claing A . (2007). Endogenous ARF6 interacts with Rac1 upon angiotensin II stimulation to regulate membrane ruffling and cell migration. Mol Biol Cell 18: 501–511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Courtois-Cox S, Jones SL, Cichowski K . (2008). Many roads lead to oncogene-induced senescence. Oncogene 27: 2801–2809.

    Article  CAS  PubMed  Google Scholar 

  • D'Souza-Schorey C, Chavrier P . (2006). ARF proteins: roles in membrane traffic and beyond. Nat Rev Mol Cell Biol 7: 347–358.

    Article  CAS  PubMed  Google Scholar 

  • Der CJ, Krontiris TG, Cooper GM . (1982). Transforming genes of human bladder and lung carcinoma cell lines are homologous to the ras genes of Harvey and Kirsten sarcoma viruses. Proc Natl Acad Sci USA 79: 3637–3640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dimri GP, Campisi J . (1994). Molecular and cell biology of replicative senescence. Cold Spring Harb Symp Quant Biol 59: 67–73.

    Article  CAS  PubMed  Google Scholar 

  • Dubois T, Zemlickova E, Howell S, Aitken A . (2003). Centaurin-alpha 1 associates in vitro and in vivo with nucleolin. Biochem Biophys Res Commun 301: 502–508.

    Article  CAS  PubMed  Google Scholar 

  • Dunphy JL, Ye K, Casanova JE . (2007). Nuclear functions of the Arf guanine nucleotide exchange factor BRAG2. Traffic 8: 661–672.

    Article  CAS  PubMed  Google Scholar 

  • Duro D, Bernard O, Della Valle V, Berger R, Larsen CJ . (1995). A new type of p16INK4/MTS1 gene transcript expressed in B-cell malignancies. Oncogene 11: 21–29.

    CAS  PubMed  Google Scholar 

  • Ewen ME, Sluss HK, Sherr CJ, Matsushime H, Kato J, Livingston DM . (1993). Functional interactions of the retinoblastoma protein with mammalian D-type cyclins. Cell 73: 487–497.

    Article  CAS  PubMed  Google Scholar 

  • Ferbeyre G, de Stanchina E, Lin AW, Querido E, McCurrach ME, Hannon GJ et al. (2002). Oncogenic ras and p53 cooperate to induce cellular senescence. Mol Cell Biol 22: 3497–3508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galas MC, Helms JB, Vitale N, Thierse D, Aunis D, Bader MF . (1997). Regulated exocytosis in chromaffin cells. A potential role for a secretory granule-associated ARF6 protein. J Biol Chem 272: 2788–2793.

    Article  CAS  PubMed  Google Scholar 

  • Gluzman Y . (1981). SV40-transformed simian cells support the replication of early SV40 mutants. Cell 23: 175–182.

    Article  CAS  PubMed  Google Scholar 

  • Hafner M, Schmitz A, Grune I, Srivatsan SG, Paul B, Kolanus W et al. (2006). Inhibition of cytohesins by SecinH3 leads to hepatic insulin resistance. Nature 444: 941–944.

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto S, Onodera Y, Hashimoto A, Tanaka M, Hamaguchi M, Yamada A et al. (2004). Requirement for Arf6 in breast cancer invasive activities. Proc Natl Acad Sci USA 101: 6647–6652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Houndolo T, Boulay PL, Claing A . (2005). G protein-coupled receptor endocytosis in ARF6-depleted cells. J Biol Chem 280: 5598–5604.

    Article  CAS  PubMed  Google Scholar 

  • Hui R, Macmillan RD, Kenny FS, Musgrove EA, Blamey RW, Nicholson RI et al. (2000). INK4a gene expression and methylation in primary breast cancer: overexpression of p16INK4a messenger RNA is a marker of poor prognosis. Clin Cancer Res 6: 2777–2787.

    CAS  PubMed  Google Scholar 

  • Larrea MD, Hong F, Wander SA, da Silva TG, Helfman D, Lannigan D et al. (2009). RSK1 drives p27Kip1 phosphorylation at T198 to promote RhoA inhibition and increase cell motility. Proc Natl Acad Sci USA 106: 9268–9273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang J, Zubovitz J, Petrocelli T, Kotchetkov R, Connor MK, Han K et al. (2002). PKB/Akt phosphorylates p27, impairs nuclear import of p27 and opposes p27-mediated G1 arrest. Nat Med 8: 1153–1160.

    Article  CAS  PubMed  Google Scholar 

  • Lin CY, Li CC, Huang PH, Lee FJ . (2002). A developmentally regulated ARF-like 5 protein (ARL5), localized to nuclei and nucleoli, interacts with heterochromatin protein 1. J Cell Sci 115: 4433–4445.

    Article  CAS  PubMed  Google Scholar 

  • Mallette FA, Ferbeyre G . (2007). The DNA damage signaling pathway connects oncogenic stress to cellular senescence. Cell Cycle 6: 1831–1836.

    Article  CAS  PubMed  Google Scholar 

  • Manning BD, Cantley LC . (2007). AKT/PKB signaling: navigating downstream. Cell 129: 1261–1274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller CL, Arnold MM, Broering TJ, Eichwald C, Kim J, Dinoso JB et al. (2007). Virus-derived platforms for visualizing protein associations inside cells. Mol Cell Proteomics 6: 1027–1038.

    Article  CAS  PubMed  Google Scholar 

  • Mitchell R, Robertson DN, Holland PJ, Collins D, Lutz EM, Johnson MS . (2003). ADP-ribosylation factor-dependent phospholipase D activation by the M3 muscarinic receptor. J Biol Chem 278: 33818–33830.

    Article  CAS  PubMed  Google Scholar 

  • Motti ML, Califano D, Troncone G, De Marco C, Migliaccio I, Palmieri E et al. (2005). Complex regulation of the cyclin-dependent kinase inhibitor p27kip1 in thyroid cancer cells by the PI3K/AKT pathway: regulation of p27kip1 expression and localization. Am J Pathol 166: 737–749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mythreye K, Blobe GC . (2009). The type III TGF-beta receptor regulates epithelial and cancer cell migration through beta-arrestin2-mediated activation of Cdc42. Proc Natl Acad Sci USA 106: 8221–8226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narita M, Nunez S, Heard E, Narita M, Lin AW, Hearn SA et al. (2003). Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113: 703–716.

    Article  CAS  PubMed  Google Scholar 

  • Narita Y, Nagane M, Mishima K, Huang HJ, Furnari FB, Cavenee WK . (2002). Mutant epidermal growth factor receptor signaling down-regulates p27 through activation of the phosphatidylinositol 3-kinase/Akt pathway in glioblastomas. Cancer Res 62: 6764–6769.

    CAS  PubMed  Google Scholar 

  • Nevins JR, Chellappan SP, Mudryj M, Hiebert S, Devoto S, Horowitz J et al. (1991). E2F transcription factor is a target for the RB protein and the cyclin A protein. Cold Spring Harb Symp Quant Biol 56: 157–162.

    Article  CAS  PubMed  Google Scholar 

  • Ohtani K, DeGregori J, Nevins JR . (1995). Regulation of the cyclin E gene by transcription factor E2F1. Proc Natl Acad Sci USA 92: 12146–12150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohtani K, Iwanaga R, Nakamura M, Ikeda M, Yabuta N, Tsuruga H et al. (1999). Cell growth-regulated expression of mammalian MCM5 and MCM6 genes mediated by the transcription factor E2F. Oncogene 18: 2299–2309.

    Article  CAS  PubMed  Google Scholar 

  • Olivier M, Eeles R, Hollstein M, Khan MA, Harris CC, Hainaut P . (2002). The IARC TP53 database: new online mutation analysis and recommendations to users. Hum Mutat 19: 607–614.

    Article  CAS  PubMed  Google Scholar 

  • Padilla PI, Uhart M, Pacheco-Rodriguez G, Peculis BA, Moss J, Vaughan M . (2008). Association of guanine nucleotide-exchange protein BIG1 in HepG2 cell nuclei with nucleolin, U3 snoRNA, and fibrillarin. Proc Natl Acad Sci USA 105: 3357–3361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parada LF, Tabin CJ, Shih C, Weinberg RA . (1982). Human EJ bladder carcinoma oncogene is homologue of Harvey sarcoma virus ras gene. Nature 297: 474–478.

    Article  CAS  PubMed  Google Scholar 

  • Rayman JB, Takahashi Y, Indjeian VB, Dannenberg JH, Catchpole S, Watson RJ et al. (2002). E2F mediates cell cycle-dependent transcriptional repression in vivo by recruitment of an HDAC1/mSin3B corepressor complex. Genes Dev 16: 933–947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roninson IB, Dokmanovic M . (2003). Induction of senescence-associated growth inhibitors in the tumor-suppressive function of retinoids. J Cell Biochem 88: 83–94.

    Article  CAS  PubMed  Google Scholar 

  • Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW . (1997). Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88: 593–602.

    Article  CAS  PubMed  Google Scholar 

  • Soule HD, Maloney TM, Wolman SR, Peterson Jr WD, Brenz R, McGrath CM et al. (1990). Isolation and characterization of a spontaneously immortalized human breast epithelial cell line, MCF-10. Cancer Res 50: 6075–6086.

    CAS  PubMed  Google Scholar 

  • Stearns T, Willingham MC, Botstein D, Kahn RA . (1990). ADP-ribosylation factor is functionally and physically associated with the Golgi complex. Proc Natl Acad Sci USA 87: 1238–1242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sullivan R, Pare GC, Frederiksen LJ, Semenza GL, Graham CH . (2008). Hypoxia-induced resistance to anticancer drugs is associated with decreased senescence and requires hypoxia-inducible factor-1 activity. Mol Cancer Ther 7: 1961–1973.

    Article  CAS  PubMed  Google Scholar 

  • Sun P, Yoshizuka N, New L, Moser BA, Li Y, Liao R et al. (2007). PRAK is essential for ras-induced senescence and tumor suppression. Cell 128: 295–308.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi Y, Rayman JB, Dynlacht BD . (2000). Analysis of promoter binding by the E2F and pRB families in vivo: distinct E2F proteins mediate activation and repression. Genes Dev 14: 804–816.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takano Y, Takenaka H, Kato Y, Masuda M, Mikami T, Saegusa M et al. (1999). Cyclin D1 overexpression in invasive breast cancers: correlation with cyclin-dependent kinase 4 and oestrogen receptor overexpression, and lack of correlation with mitotic activity. J Cancer Res Clin Oncol 125: 505–512.

    Article  CAS  PubMed  Google Scholar 

  • Tonic I, Yu WN, Park Y, Chen CC, Hay N . (2010). Akt activation emulates Chk1 inhibition and Bcl2 overexpression and abrogates G2 cell cycle checkpoint by inhibiting BRCA1 foci. J Biol Chem 285: 23790–23798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vernier M, Bourdeau V, Gaumont-Leclerc MF, Moiseeva O, Begin V, Saad F et al. (2011). Regulation of E2Fs and senescence by PML nuclear bodies. Genes Dev 25: 41–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viaud J, Zeghouf M, Barelli H, Zeeh JC, Padilla A, Guibert B et al. (2007). Structure-based discovery of an inhibitor of Arf activation by Sec7 domains through targeting of protein-protein complexes. Proc Natl Acad Sci USA 104: 10370–10375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe G, Albanese C, Lee RJ, Reutens A, Vairo G, Henglein B et al. (1998). Inhibition of cyclin D1 kinase activity is associated with E2F-mediated inhibition of cyclin D1 promoter activity through E2F and Sp1. Mol Cell Biol 18: 3212–3222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weinberg RA . (1995). The retinoblastoma protein and cell cycle control. Cell 81: 323–330.

    Article  CAS  PubMed  Google Scholar 

  • Wu D, Asiedu M, Wei Q . (2009). Myosin-interacting guanine exchange factor (MyoGEF) regulates the invasion activity of MDA-MB-231 breast cancer cells through activation of RhoA and RhoC. Oncogene 28: 2219–2230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yagata H, Kajiura Y, Yamauchi H . (2011). Current strategy for triple-negative breast cancer: appropriate combination of surgery, radiation, and chemotherapy. Breast Cancer (e-pub ahead of print).

    Article  PubMed  Google Scholar 

  • Yakes FM, Chinratanalab W, Ritter CA, King W, Seelig S, Arteaga CL . (2002). Herceptin-induced inhibition of phosphatidylinositol-3 kinase and Akt is required for antibody-mediated effects on p27, cyclin D1, and antitumor action. Cancer Res 62: 4132–4141.

    CAS  PubMed  Google Scholar 

  • Yudin D, Fainzilber M . (2009). Ran on tracks--cytoplasmic roles for a nuclear regulator. J Cell Sci 122: 587–593.

    Article  CAS  PubMed  Google Scholar 

  • Zhou BP, Liao Y, Xia W, Zou Y, Spohn B, Hung MC . (2001). HER-2/neu induces p53 ubiquitination via Akt-mediated MDM2 phosphorylation. Nat Cell Biol 3: 973–982.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr Tony Kouzarides (The Gurdon Institute, University of Cambridge, UK) for GST-pRB. We thank Raphaëlle Lambert from genomic platform of IRIC (Montreal, Canada). We are grateful to Dr Christian Beauséjour (University of Montreal, Montreal, Canada) for reagents and helpful discussion. We thank Dr Stéphane A Laporte (McGill University, Montreal, Canada) for the use of his confocal microscope and Dr Denis de Blois and Julie-Émilie Huot-Marchand (University of Montreal, Montreal, Canada) for the use of their photo-microscopy plateform. We thank Dr Véronique Bourdeau (University of Montreal, Montreal, Canada) for helpful discussion and critical reading of the paper. This work was supported by the Canadian Institutes of Health Research (CIHR) grant MOP-79470 to AC. PLB is the recipient of a Frederick Banting and Charles Best PhD Research Award from the CIHR. AC is the recipient of a New Investigator Award from the CIHR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Claing.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boulay, PL., Schlienger, S., Lewis-Saravalli, S. et al. ARF1 controls proliferation of breast cancer cells by regulating the retinoblastoma protein. Oncogene 30, 3846–3861 (2011). https://doi.org/10.1038/onc.2011.100

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.100

Keywords

This article is cited by

Search

Quick links