Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Casein kinase 1 functions as both penultimate and ultimate kinase in regulating Cdc25A destruction

Abstract

The Cdc25A protein phosphatase drives cell-cycle transitions by activating cyclin-dependent protein kinases. Failure to regulate Cdc25A leads to deregulated cell-cycle progression, bypass of cell-cycle checkpoints and genome instability. Ubiquitin-mediated proteolysis has an important role in balancing Cdc25A levels. Cdc25A contains a DS82G motif whose phosphorylation is targeted by β-TrCP E3 ligase during interphase. Targeting β-TrCP to Cdc25A requires phosphorylation of serines 79 (S79) and 82 (S82). Here, we report that casein kinase 1 α (CK1α) phosphorylates Cdc25A on both S79 and S82 in a hierarchical manner requiring prior phosphorylation of S76 by Chk1 or GSK-3β. This facilitates β-TrCP binding and ubiquitin-mediated proteolysis of Cdc25A throughout interphase and after exposure to genotoxic stress. The priming of Cdc25A by at least three kinases (Chk1, GSK-3β, CK1α), some of which also require priming, ensures diverse extra- and intracellular signals interface with Cdc25A to precisely control cell division.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Abramoff MD, Magelhaes PJ, Ram SJ . (2004). Image processing with Image J. Biophotonics Int 11: 36–42.

    Google Scholar 

  • Bain J, Plater L, Elliott M, Shpiro N, Hastie CJ, McLauchlan H et al. (2007). The selectivity of protein kinase inhibitors: a further update. Biochem J 408: 297–315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartek J, Lukas J . (2001). Pathways governing G1/S transition and their response to DNA damage. FEBS Lett 490: 117–122.

    Article  CAS  PubMed  Google Scholar 

  • Behrend L, Milne DM, Stoter M, Deppert W, Campbell LE, Meek DW et al. (2000). IC261, a specific inhibitor of the protein kinases casein kinase 1-delta and -epsilon, triggers the mitotic checkpoint and induces p53-dependent postmitotic effects. Oncogene 19: 5303–5313.

    Article  CAS  PubMed  Google Scholar 

  • Bernardi R, Lieberman DA, Hoffman B . (2000). Cdc25A stability is controlled by the ubiquitin-proteasome pathway during cell cycle progression and terminal differentiation. Oncogene 19: 2447–2454.

    Article  CAS  PubMed  Google Scholar 

  • Blomberg I, Hoffman I . (1999). Ectopic expression of Cdc25A accelerates the G1/S transition and leads to premature activation of cyclin E-and cyclin A-dependent kinases. Mol Cell Biol 19: 6183–6194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boutros R, Dozier C, Ducommun B . (2006). The when and wheres of CDC25 phosphatases. Curr Opin Cell Biol 18: 185–191.

    Article  CAS  PubMed  Google Scholar 

  • Busino L, Chiesa M, Draetta GF, Donzelli M . (2004). Cdc25A phosphatase: combinatorial phosphorylation, ubiquitylation and proteolysis. Oncogene 23: 2050–2056.

    Article  CAS  PubMed  Google Scholar 

  • Busino L, Donzelli M, Chiesa M, Guardavaccaro D, Ganoth D, Dorrello NV et al. (2003). Degradation of Cdc25A by beta-TrCP during S phase and in response to DNA damage. Nature 426: 87–91.

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Li C, Pan Y, Chen J . (2005). Regulation of p53-MDMX interaction by casein kinase 1 alpha. Mol Cell Biol 25: 6509–6520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen M-S, Ryan CE, Piwnica-Worms H . (2003). Chk1 kinase negatively regulates mitotic function of Cdc25A phosphatase through 14-3-3 binding. Mol Cell Biol 23: 7488–7497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen P, Frame S . (2001). The renaissance of GSK3. Nat Rev Mol Cell Biol 2: 769–776.

    Article  CAS  PubMed  Google Scholar 

  • Doble BW, Woodgett JR . (2003). GSK-3: tricks of the trade for a multi-tasking kinase. J Cell Sci 116: 1175–1186.

    Article  CAS  PubMed  Google Scholar 

  • Donzelli M, Busino L, Chiesa M, Ganoth D, Hershko A, Draetta GF . (2004). Hierarchical order of phosphorylation events commits Cdc25A to betaTrCP-dependent degradation. Cell Cycle 3: 469–471.

    Article  CAS  PubMed  Google Scholar 

  • Donzelli M, Squatrito M, Ganoth D, Hershko A, Pagano M, Draetta GF . (2002). Dual mode of degradation of Cdc25 A phosphatase. EMBO J 21: 4875–4884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falck J, Mailand N, Syljuasen RG, Bartek J, Lukas J . (2001). The ATM-Chk2-Cdc25A checkpoint pathway guards against radioresistant DNA synthesis. Nature 410: 842–847.

    Article  CAS  PubMed  Google Scholar 

  • Flotow H, Graves PR, Wang AQ, Fiol CJ, Roeske RW, Roach PJ . (1990). Phosphate groups as substrate determinants for casein kinase I action. J Biol Chem 265: 14264–14269.

    CAS  PubMed  Google Scholar 

  • Galaktionov K, Chen X, Beach D . (1996). Cdc25 cell-cycle phosphatase as a target of c-myc. Nature 382: 511–517.

    Article  CAS  PubMed  Google Scholar 

  • Goloudina A, Yamaguchi H, Chervyakova DB, Appella E, Fornace Jr AJ, Bulavin DV . (2003). Regulation of human Cdc25A stability by serine 75 phosphorylation is not sufficient to activate a S-phase checkpoint. Cell Cycle 2: 473–478.

    Article  CAS  PubMed  Google Scholar 

  • Gross SD, Anderson RA . (1998). Casein kinase I: spatial organization and positioning of a multifunctional protein kinase family. Cell Signal 10: 699–711.

    Article  CAS  PubMed  Google Scholar 

  • Hassepass I, Voit R, Hoffmann I . (2003). Phosphorylation at serine-75 is required for UV-mediated degradation of human Cdc25A phosphatase at the S-phase checkpoint. J Biol Chem 278: 29824–29829.

    Article  CAS  PubMed  Google Scholar 

  • Jin J, Shirogane T, Xu L, Nalepa G, Qin J, Elledge SJ et al. (2003). SCFbeta-TRCP links Chk1 signaling to degradation of the Cdc25A protein phosphatase. Genes Dev 17: 3062–3074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanemori Y, Uto K, Sagata N . (2005). Beta-TrCP recognizes a previously undescribed nonphosphorylated destruction motif in Cdc25A and Cdc25B phosphatases. Proc Natl Acad Sci USA 102: 6279–6284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang T, Wei Y, Honaker Y, Yamaguchi H, Appella E, Hung MC et al. (2008). GSK-3beta targets Cdc25A for ubiquitin-mediated proteolysis, and GSK-3beta inactivation correlates with Cdc25A overproduction in human cancers. Cancer Cell 13: 36–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knippschild U, Gocht A, Wolff S, Huber N, Lohler J, Stoter M . (2005). The casein kinase 1 family: participation in multiple cellular processes in eukaryotes. Cell Signal 17: 675–689.

    Article  CAS  PubMed  Google Scholar 

  • Kristjansdottir K, Rudolph J . (2004). Cdc25 phosphatases and cancer. Chem Biol 11: 1043–1051.

    Article  CAS  PubMed  Google Scholar 

  • Loffler H, Syljuasen RG, Bartkova J, Worm J, Lukas J, Bartek J . (2003). Distinct modes of deregulation of the proto-oncogenic Cdc25A phosphatase in human breast cancer cell lines. Oncogene 22: 8063–8071.

    Article  PubMed  Google Scholar 

  • Mailand N, Falck J, Lukas C, Syljuasen RG, Welcker M, Bartek J et al. (2000). Rapid destruction of human Cdc25A in response to DNA damage. Science 288: 1425–1429.

    Article  CAS  PubMed  Google Scholar 

  • Melixetian M, Klein DK, Sorensen CS, Helin K . (2009). NEK11 regulates CDC25A degradation and the IR-induced G2/M checkpoint. Nat Cell Biol 11: 1247–1253.

    Article  CAS  PubMed  Google Scholar 

  • Molinari M, Mercurio C, Dominguez J, Goubin F, Draetta GF . (2000). Human Cdc25A inactivation in response to S phase inhibition and its role in preventing premature mitosis. EMBO Rep 1: 71–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nash P, Tang X, Orlicky S, Chen Q, Gertler FB, Mendenhall MD et al. (2001). Multisite phosphorylation of a CDK inhibitor sets a threshold for the onset of DNA replication. Nature 414: 514–521.

    Article  CAS  PubMed  Google Scholar 

  • Ray D, Kiyokawa H . (2008). CDC25A phosphatase: a rate-limiting oncogene that determines genomic stability. Cancer Res 68: 1251–1253.

    Article  CAS  PubMed  Google Scholar 

  • Ray D, Terao Y, Nimbalkar D, Chu LH, Donzelli M, Tsutsui T et al. (2005). Transforming growth factor beta facilitates beta-TrCP-mediated degradation of Cdc25A in a Smad3-dependent manner. Mol Cell Biol 25: 3338–3347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rena G, Bain J, Elliott M, Cohen P . (2004). D4476, a cell-permeant inhibitor of CK1, suppresses the site-specific phosphorylation and nuclear exclusion of FOXO1a. EMBO Rep 5: 60–65.

    Article  CAS  PubMed  Google Scholar 

  • Vigo E, Muller H, Properini E, Hatevoer G, Cartwright P, Moroni MC et al. (1999). CDC25A phosphatase is a target of E2F and is required for efficient E2F-induced S phase. Mol Cell Biol 19: 6379–6395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zabludoff SD, Deng C, Grondine MR, Sheehy AM, Ashwell S, Caleb BL et al. (2008). AZD7762, a novel checkpoint kinase inhibitor, drives checkpoint abrogation and potentiates DNA-targeted therapies. Mol Cancer Ther 7: 2955–2966.

    Article  CAS  PubMed  Google Scholar 

  • Zhao H, Watkins JL, Piwnica-Worms H . (2002). Disruption of the checkpoint kinase 1/cell division cycle 25A pathway abrogates ionizing radiation-induced S and G2 checkpoints. Proc NatlAcad Sci USA 99: 14795–14800.

    Article  CAS  Google Scholar 

  • Zhou BP, Deng J, Xia W, Xu J, Li YM, Gunduz M et al. (2004). Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial-mesenchymal transition. Nat Cell Biol 6: 931–940.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Van Leung-Pineda and Dr Tiebang Kang for helpful suggestions. We also thank Chris Ryan for editorial assistance. We thank Chris Ryan, Yonghao Hou, Mei-Shya Chen, Dr Jiandong Chen and Dr Binhua P Zhou for providing expression plasmids. This work was supported by grants from the National Institutes of Health (GM047017 and P50 CA94056). We acknowledge the p50 Molecular Imaging Center and the Alvin J. Siteman Cancer Center at Washington University School of Medicine for the use of the High Throughput Core. The Siteman Cancer Center was supported in part by an NCI Cancer Center Support Grant No. P30 CA91842. H.P.-W. is an Investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Piwnica-Worms.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Honaker, Y., Piwnica-Worms, H. Casein kinase 1 functions as both penultimate and ultimate kinase in regulating Cdc25A destruction. Oncogene 29, 3324–3334 (2010). https://doi.org/10.1038/onc.2010.96

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.96

Keywords

This article is cited by

Search

Quick links