Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Bortezomib decreases Rb phosphorylation and induces caspase-dependent apoptosis in Imatinib-sensitive and -resistant Bcr-Abl1-expressing cells

Abstract

The use of c-abl-specific inhibitors such as Imatinib (IM) or Dasatinib has revolutionized the treatment of chronic myeloid leukemia (CML). However, a significant percentage of patients become resistant to IM. In this report, we have analyzed the possibility of using the proteasome as a molecular target in CML. Our results show that cells that express Bcr-Abl1 are more sensitive to the inhibition of the proteasome with Bortezomib (Btz) than control cells. This treatment reduces the proliferation of Bcr-Abl1-expressing cells, by inactivating NF-κB2 and decreasing the phosphorylation of Rb, eventually leading to an increase in caspase-dependent apoptosis. Furthermore, we show that Btz also induces cell-cycle arrest and apoptosis in cells expressing Bcr-Abl1 mutants that are resistant to IM. These results unravel a new molecular target of Btz, that is the Rb pathway, and open new possibilities in the treatment of CML especially for patients that become resistant to IM because of the presence of the T315I mutation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Adams J . (2001). Proteasome inhibition in cancer: development of PS-341. Semin Oncol 28: 613–619.

    Article  CAS  Google Scholar 

  • Andreu EJ, Lledo E, Poch E, Ivorra C, Albero MP, Martinez-Climent JA et al. (2005). BCR-ABL induces the expression of Skp2 through the PI3K pathway to promote p27Kip1 degradation and proliferation of chronic myelogenous leukemia cells. Cancer Res 65: 3264–3272.

    Article  CAS  Google Scholar 

  • Barre B, Perkins ND . (2007). A cell cycle regulatory network controlling NF-kappaB subunit activity and function. EMBO J 26: 4841–4855.

    Article  CAS  Google Scholar 

  • Brignole C, Marimpietri D, Pastorino F, Nico B, Di Paolo D, Cioni M et al. (2006). Effect of bortezomib on human neuroblastoma cell growth, apoptosis, and angiogenesis. J Natl Cancer Inst 98: 1142–1157.

    Article  CAS  Google Scholar 

  • Chauhan D, Bianchi G, Anderson KC . (2008). Targeting the UPS as therapy in multiple myeloma. BMC Biochem 9 (Suppl 1): S1.

    Article  Google Scholar 

  • Chou TC, Talalay P . (1984). Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 22: 27–55.

    Article  CAS  Google Scholar 

  • Crawford LJ, Windrum P, Magill L, Melo JV, McCallum L, McMullin MF et al. (2009). Proteasome proteolytic profile is linked to Bcr-Abl expression. Exp Hematol 37: 357–366.

    Article  CAS  Google Scholar 

  • Dai Y, Rahmani M, Pei XY, Dent P, Grant S . (2004). Bortezomib and flavopiridol interact synergistically to induce apoptosis in chronic myeloid leukemia cells resistant to imatinib mesylate through both Bcr/Abl-dependent and -independent mechanisms. Blood 104: 509–518.

    Article  CAS  Google Scholar 

  • Dasmahapatra G, Nguyen TK, Dent P, Grant S . (2006). Adaphostin and bortezomib induce oxidative injury and apoptosis in imatinib mesylate-resistant hematopoietic cells expressing mutant forms of Bcr/Abl. Leuk Res 30: 1263–1272.

    Article  CAS  Google Scholar 

  • Druker BJ . (2008). Translation of the Philadelphia chromosome into therapy for CML. Blood 112: 4808–4817.

    Article  CAS  Google Scholar 

  • Galimberti S, Canestraro M, Pacini S, Fazzi R, Orciuolo E, Trombi L et al. (2008). PS-341 (Bortezomib) inhibits proliferation and induces apoptosis of megakaryoblastic MO7-e cells. Leuk Res 32: 103–112.

    Article  CAS  Google Scholar 

  • Gatto S, Scappini B, Pham L, Onida F, Milella M, Ball G et al. (2003). The proteasome inhibitor PS-341 inhibits growth and induces apoptosis in Bcr/Abl-positive cell lines sensitive and resistant to imatinib mesylate. Haematologica 88: 853–863.

    CAS  Google Scholar 

  • Griswold IJ, Macpartlin M, Bumm T, Goss VL, O'Hare T, Lee KA et al. (2006). Kinase domain mutants of Bcr-Abl exhibit altered transformation potency, kinase activity, and substrate utilization, irrespective of sensitivity to imatinib. Mol Cell Biol 26: 6082–6093.

    Article  CAS  Google Scholar 

  • Heaney NB, Pellicano F, Zhang B, Crawford L, Chu S, Kazmi SM et al. (2010). Bortezomib induces apoptosis in primitive chronic myeloid leukemia cells including LTC-IC and NOD/SCID repopulating cells. Blood (e-pub ahead of print 12 January 2010; doi:10.1182/blood-2008-06-164582).

    Article  CAS  Google Scholar 

  • Heusch M, Lin L, Geleziunas R, Greene WC . (1999). The generation of nfkb2 p52: mechanism and efficiency. Oncogene 18: 6201–6208.

    Article  CAS  Google Scholar 

  • Janicke RU, Walker PA, Lin XY, Porter AG . (1996). Specific cleavage of the retinoblastoma protein by an ICE-like protease in apoptosis. EMBO J 15: 6969–6978.

    Article  CAS  Google Scholar 

  • Joazeiro CA, Anderson KC, Hunter T . (2006). Proteasome inhibitor drugs on the rise. Cancer Res 66: 7840–7842.

    Article  CAS  Google Scholar 

  • Kano Y, Akutsu M, Tsunoda S, Izumi T, Kobayashi H, Mano H et al. (2007). Cytotoxic effects of histone deacetylase inhibitor FK228 (depsipeptide, formally named FR901228) in combination with conventional anti-leukemia/lymphoma agents against human leukemia/lymphoma cell lines. Invest New Drugs 25: 31–40.

    Article  CAS  Google Scholar 

  • Khidr L, Chen PL . (2006). RB, the conductor that orchestrates life, death and differentiation. Oncogene 25: 5210–5219.

    Article  CAS  Google Scholar 

  • Kossatz U, Dietrich N, Zender L, Buer J, Manns MP, Malek NP . (2004). Skp2-dependent degradation of p27kip1 is essential for cell cycle progression. Genes Dev 18: 2602–2607.

    Article  CAS  Google Scholar 

  • Markovina S, Callander NS, O'Connor SL, Kim J, Werndli JE, Raschko M et al. (2008). Bortezomib-resistant nuclear factor-kappaB activity in multiple myeloma cells. Mol Cancer Res 6: 1356–1364.

    Article  CAS  Google Scholar 

  • Murray AW . (2004). Recycling the cell cycle: cyclins revisited. Cell 116: 221–234.

    Article  CAS  Google Scholar 

  • Ocio EM, Mateos MV, Maiso P, Pandiella A, San-Miguel JF . (2008). New drugs in multiple myeloma: mechanisms of action and phase I/II clinical findings. Lancet Oncol 9: 1157–1165.

    Article  CAS  Google Scholar 

  • Perez-Galan P, Roue G, Villamor N, Montserrat E, Campo E, Colomer D . (2006). The proteasome inhibitor bortezomib induces apoptosis in mantle-cell lymphoma through generation of ROS and Noxa activation independent of p53 status. Blood 107: 257–264.

    Article  CAS  Google Scholar 

  • Perez-Roger I, Kim SH, Griffiths B, Sewing A, Land H . (1999). Cyclins D1 and D2 mediate myc-induced proliferation via sequestration of p27(Kip1) and p21(Cip1). EMBO J 18: 5310–5320.

    Article  CAS  Google Scholar 

  • Poch E, Minambres R, Mocholi E, Ivorra C, Perez-Arago A, Guerri C et al. (2007). RhoE interferes with Rb inactivation and regulates the proliferation and survival of the U87 human glioblastoma cell line. Exp Cell Res 313: 719–731.

    Article  CAS  Google Scholar 

  • Pomerantz JL, Baltimore D . (2002). Two pathways to NF-kappaB. Mol Cell 10: 693–695.

    Article  CAS  Google Scholar 

  • Ramirez P, DiPersio JF . (2008). Therapy options in imatinib failures. Oncologist 13: 424–434.

    Article  CAS  Google Scholar 

  • Roman-Gomez J, Jimenez-Velasco A, Agirre X, Castillejo JA, Navarro G, San Jose-Eneriz E et al. (2007). Epigenetic regulation of human cancer/testis antigen gene, HAGE, in chronic myeloid leukemia. Haematologica 92: 153–162.

    Article  CAS  Google Scholar 

  • Sartore-Bianchi A, Gasparri F, Galvani A, Nici L, Darnowski JW, Barbone D et al. (2007). Bortezomib inhibits nuclear factor-kappaB dependent survival and has potent in vivo activity in mesothelioma. Clin Cancer Res 13: 5942–5951.

    Article  CAS  Google Scholar 

  • Sawyers CL . (1993). The role of myc in transformation by BCR-ABL. Leuk Lymphoma 11: 45–46.

    Article  Google Scholar 

  • Shah NP, Sawyers CL . (2003). Mechanisms of resistance to STI571 in Philadelphia chromosome-associated leukemias. Oncogene 22: 7389–7395.

    Article  CAS  Google Scholar 

  • Sherr CJ, Roberts JM . (2004). Living with or without cyclins and cyclin-dependent kinases. Genes Dev 18: 2699–2711.

    Article  CAS  Google Scholar 

  • Stapnes C, Doskeland AP, Hatfield K, Ersvaer E, Ryningen A, Lorens JB et al. (2007). The proteasome inhibitors bortezomib and PR-171 have antiproliferative and proapoptotic effects on primary human acute myeloid leukaemia cells. Br J Haematol 136: 814–828.

    Article  CAS  Google Scholar 

  • Strauss SJ, Higginbottom K, Juliger S, Maharaj L, Allen P, Schenkein D et al. (2007). The proteasome inhibitor bortezomib acts independently of p53 and induces cell death via apoptosis and mitotic catastrophe in B-cell lymphoma cell lines. Cancer Res 67: 2783–2790.

    Article  CAS  Google Scholar 

  • Van PN, Xinh PT, Kano Y, Tokunaga K, Sato Y . (2005). Establishment and characterization of a novel Philadelphia-chromosome positive chronic myeloid leukemia cell line, TCC-S, expressing P210 and P190 Bcr/Abl transcripts but missing normal ABL gene. Hum Cell 18: 25–33.

    Article  Google Scholar 

  • Vink J, Cloos J, Kaspers GJ . (2006). Proteasome inhibition as novel treatment strategy in leukaemia. Br J Haematol 134: 253–262.

    Article  CAS  Google Scholar 

  • Wei AH, Roberts AW . (2008). Bortezomib: putting mantle cell lymphoma on death row. Leuk Lymphoma 49: 657–658.

    Article  CAS  Google Scholar 

  • Yan H, Wang YC, Li D, Wang Y, Liu W, Wu YL et al. (2007). Arsenic trioxide and proteasome inhibitor bortezomib synergistically induce apoptosis in leukemic cells: the role of protein kinase Cdelta. Leukemia 21: 1488–1495.

    Article  CAS  Google Scholar 

  • Yang DT, Young KH, Kahl BS, Markovina S, Miyamoto S . (2008). Prevalence of bortezomib-resistant constitutive NF-kappaB activity in mantle cell lymphoma. Mol Cancer 7: 40.

    Article  Google Scholar 

  • Yu C, Rahmani M, Conrad D, Subler M, Dent P, Grant S . (2003). The proteasome inhibitor bortezomib interacts synergistically with histone deacetylase inhibitors to induce apoptosis in Bcr/Abl+ cells sensitive and resistant to STI571. Blood 102: 3765–3774.

    Article  CAS  Google Scholar 

  • Zhao X, Qiu W, Kung J, Peng X, Yegappan M, Yen-Lieberman B et al. (2008). Bortezomib induces caspase-dependent apoptosis in Hodgkin lymphoma cell lines and is associated with reduced c-FLIP expression: a gene expression profiling study with implications for potential combination therapies. Leuk Res 32: 275–285.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Elisabeth Buchdunger at Novartis for providing us with Imatinib and Millenium Pharmaceuticals for the kind gift of Bortezomib. We also thank Dr BJ Druker for the mutant Bcr-Abl1-expressing BaF/3 cells. The study was supported by grants from the Instituto de Salud Carlos III PI060285, PI070602 and RD06/0020 to IPR, FP and EJA; from the Consellería de Sanitat to IPR; from the Cardenal Herrera-CEU University (PRUCH and Santander-Copernicus) to IPR and ‘UTE project CIMA’. Fellowships were from the Cardenal Herrera-CEU University to MPA and JJV and from the Generalitat Valenciana to JMV. EJA is supported by the program Ramon y Cajal from the Ministerio de Ciencia e Innovación.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I Pérez-Roger.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albero, M., Vaquer, J., Andreu, E. et al. Bortezomib decreases Rb phosphorylation and induces caspase-dependent apoptosis in Imatinib-sensitive and -resistant Bcr-Abl1-expressing cells. Oncogene 29, 3276–3286 (2010). https://doi.org/10.1038/onc.2010.81

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.81

Keywords

This article is cited by

Search

Quick links