Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

α-Catulin knockdown induces senescence in cancer cells

Abstract

Cellular senescence functions as a tumor suppressor that protects against cancer progression. α-Catulin, an α-catenin-related protein, is reported to have tumorigenic potential because it regulates the nuclear factor-κB (NF-κB) pathway, but little is known about its clinical relevance and the mechanism through which it regulates cancer progression. Here, we found that α-catulin mRNA levels were significantly upregulated in cancer cell lines and clinical oral squamous cell carcinomas, which positively correlated with tumor size (P=0.001) and American Joint Committee on Cancer (AJCC) stage (P=0.004). α-Catulin knockdown in the OC2 and A549 cancer cell lines dramatically decreased cell proliferation and contributed to cellular senescence, and inhibited OC2 xenograft growth. Mechanistic dissection showed that α-catulin depletion strongly induced the DNA-damage response (DDR) in both cell lines, via a p53/p21-dependent pathway in A549 cells, but a p53/p21-independent pathway in OC2 cells carrying mutant p53. Global gene expression analysis revealed that α-catulin knockdown altered cell-cycle regulation and DDR pathways at the presenescent stage as well as significantly downregulate several crucial genes related to mitotic chromosome condensation, DDR and DNA repair systems, which suggests that its depletion-induced cellular senescence might be caused by chromosome condensation failures, severe DNA damage and impaired DNA repair ability. Our study provides evidence that α-catulin promotes tumor growth by preventing cellular senescence and suggests that downregulating α-catulin may be a promising therapeutic approach for cancer treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Bartkova J, Horejsi Z, Koed K, Kramer A, Tort F, Zieger K et al. (2005). DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434: 864–870.

    Article  CAS  PubMed  Google Scholar 

  • Bartkova J, Rezaei N, Liontos M, Karakaidos P, Kletsas D, Issaeva N et al. (2006). Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 444: 633–637.

    Article  CAS  PubMed  Google Scholar 

  • Campisi J, d'Adda di Fagagna F . (2007). Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 8: 729–740.

    Article  CAS  PubMed  Google Scholar 

  • Carmena M, Earnshaw WC . (2003). The cellular geography of aurora kinases. Nat Rev Mol Cell Biol 4: 842–854.

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Trotman LC, Shaffer D, Lin HK, Dotan ZA, Niki M et al. (2005). Crucial role of p53-dependent cellular senescence in suppression of Pten deficient tumorigenesis. Nature 436: 725–730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coelho PA, Queiroz-Machado J, Sunkel CE . (2003). Condensin-dependent localisation of topoisomerase II to an axial chromosomal structure is required for sister chromatid resolution during mitosis. J Cell Sci 116: 4763–4776.

    Article  CAS  PubMed  Google Scholar 

  • Collado M, Blasco MA, Serrano M . (2007). Cellular senescence in cancer and aging. Cell 130: 223–233.

    Article  CAS  PubMed  Google Scholar 

  • Collado M, Gil J, Efeyan A, Guerra C, Schuhmacher AJ, Barradas M et al. (2005). Tumour biology: senescence in premalignant tumours. Nature 436: 642.

    Article  CAS  PubMed  Google Scholar 

  • d'Adda di Fagagna F . (2008). Living on a break: cellular senescence as a DNA-damage response. Nat Rev Cancer 8: 512–522.

    Article  CAS  PubMed  Google Scholar 

  • de Vries A, Flores ER, Miranda B, Hsieh HM, van Oostrom CT, Sage J et al. (2002). Targeted point mutations of p53 lead to dominant-negative inhibition of wild-type p53 function. Proc Natl Acad Sci USA 99: 2948–2953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Micco R, Fumagalli M, Cicalese A, Piccinin S, Gasparini P, Luise C et al. (2006). Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 444: 638–642.

    Article  CAS  PubMed  Google Scholar 

  • Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C et al. (1995). A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA 92: 9363–9367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorgoulis VG, Vassiliou LV, Karakaidos P, Zacharatos P, Kotsinas A, Liloglou T et al. (2005). Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 434: 907–913.

    Article  CAS  PubMed  Google Scholar 

  • Huck JJ, Zhang M, McDonald A, Bowman D, Hoar KM, Stringer B et al. (2010). MLN8054, an inhibitor of Aurora A kinase, induces senescence in human tumor cells both in vitro and in vivo. Mol Cancer Res 8: 373–384.

    Article  CAS  PubMed  Google Scholar 

  • Hudson DF, Marshall KM, Earnshaw WC . (2009). Condensin: architect of mitotic chromosomes. Chromosome Res 17: 131–144.

    Article  CAS  PubMed  Google Scholar 

  • Janssens B, Staes K, van Roy F . (1999). Human alpha-catulin, a novel alpha-catenin-like molecule with conserved genomic structure, but deviating alternative splicing. Biochim Biophys Acta 1447: 341–347.

    Article  CAS  PubMed  Google Scholar 

  • Kunkel TA, Erie DA . (2005). DNA mismatch repair. Annu Rev Biochem 74: 681–710.

    Article  CAS  PubMed  Google Scholar 

  • Li W, Ge Z, Liu C, Liu Z, Bjorkholm M, Jia J et al. (2008). CIP2A is overexpressed in gastric cancer and its depletion leads to impaired clonogenicity, senescence, or differentiation of tumor cells. Clin Cancer Res 14: 3722–3728.

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Qian H, Li X, Wang H, Yu J, Liu Y et al. (2009). Adenoviral-mediated gene transfer of Gadd45a results in suppression by inducing apoptosis and cell cycle arrest in pancreatic cancer cell. J Gene Med 11: 3–13.

    Article  CAS  PubMed  Google Scholar 

  • Lleonart ME, Artero-Castro A, Kondoh H . (2009). Senescence induction; a possible cancer therapy. Mol Cancer 8: 3.

    Article  PubMed  PubMed Central  Google Scholar 

  • Merdek KD, Nguyen NT, Toksoz D . (2004). Distinct activities of the alpha-catenin family, alpha-catulin and alpha-catenin, on beta-catenin-mediated signaling. Mol Cell Biol 24: 2410–2422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mikhailov A, Cole RW, Rieder CL . (2002). DNA damage during mitosis in human cells delays the metaphase/anaphase transition via the spindle-assembly checkpoint. Curr Biol 12: 1797–1806.

    Article  CAS  PubMed  Google Scholar 

  • Miura K, Suzuki K, Tokino T, Isomura M, Inazawa J, Matsuno S et al. (1996). Detailed deletion mapping in squamous cell carcinomas of the esophagus narrows a region containing a putative tumor suppressor gene to about 200 kilobases on distal chromosome 9q. Cancer Res 56: 1629–1634.

    CAS  PubMed  Google Scholar 

  • Murr R, Loizou JI, Yang YG, Cuenin C, Li H, Wang ZQ et al. (2006). Histone acetylation by Trrap-Tip60 modulates loading of repair proteins and repair of DNA double-strand breaks. Nat Cell Biol 8: 91–99.

    Article  CAS  PubMed  Google Scholar 

  • Park B, Nguyen NT, Dutt P, Merdek KD, Bashar M, Sterpetti P et al. (2002). Association of Lbc Rho guanine nucleotide exchange factor with alpha-catenin-related protein, alpha-catulin/CTNNAL1, supports serum response factor activation. J Biol Chem 277: 45361–45370.

    Article  CAS  PubMed  Google Scholar 

  • Pastink A, Eeken JC, Lohman PH . (2001). Genomic integrity and the repair of double-strand DNA breaks. Mutat Res 480–481: 37–50.

    Article  PubMed  Google Scholar 

  • Rosemary Siafakas A, Richardson DR . (2009). Growth arrest and DNA damage-45 alpha (GADD45alpha). Int J Biochem Cell Biol 41: 986–989.

    Article  CAS  PubMed  Google Scholar 

  • Sarkisian CJ, Keister BA, Stairs DB, Boxer RB, Moody SE, Chodosh LA . (2007). Dose-dependent oncogene-induced senescence in vivo and its evasion during mammary tumorigenesis. Nat Cell Biol 9: 493–505.

    Article  CAS  PubMed  Google Scholar 

  • Schultz DC, Vanderveer L, Buetow KH, Boente MP, Ozols RF, Hamilton TC et al. (1995). Characterization of chromosome 9 in human ovarian neoplasia identifies frequent genetic imbalance on 9q and rare alterations involving 9p, including CDKN2. Cancer Res 55: 2150–2157.

    CAS  PubMed  Google Scholar 

  • Shrivastav M, De Haro LP, Nickoloff JA . (2008). Regulation of DNA double-strand break repair pathway choice. Cell Res 18: 134–147.

    Article  CAS  PubMed  Google Scholar 

  • Stucki M, Clapperton JA, Mohammad D, Yaffe MB, Smerdon SJ, Jackson SP . (2005). MDC1 directly binds phosphorylated histone H2AX to regulate cellular responses to DNA double-strand breaks. Cell 123: 1213–1226.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, Fujii M, Ayusawa D . (2002). Demethylation of classical satellite 2 and 3 DNA with chromosomal instability in senescent human fibroblasts. Exp Gerontol 37: 1005–1014.

    Article  CAS  PubMed  Google Scholar 

  • van Gent DC, Hoeijmakers JH, Kanaar R . (2001). Chromosomal stability and the DNA double-stranded break connection. Nat Rev Genet 2: 196–206.

    Article  CAS  PubMed  Google Scholar 

  • Volker M, Mone MJ, Karmakar P, van Hoffen A, Schul W, Vermeulen W et al. (2001). Sequential assembly of the nucleotide excision repair factors in vivo. Mol Cell 8: 213–224.

    Article  CAS  PubMed  Google Scholar 

  • Wakasugi M, Kawashima A, Morioka H, Linn S, Sancar A, Mori T et al. (2002). DDB accumulates at DNA damage sites immediately after UV irradiation and directly stimulates nucleotide excision repair. J Biol Chem 277: 1637–1640.

    Article  CAS  PubMed  Google Scholar 

  • Walen KH . (2007). Origin of diplochromosomal polyploidy in near-senescent fibroblast cultures: heterochromatin, telomeres and chromosomal instability (CIN). Cell Biol Int 31: 1447–1455.

    Article  CAS  PubMed  Google Scholar 

  • Wiesner C, Winsauer G, Resch U, Hoeth M, Schmid JA, van Hengel J et al. (2008). Alpha-catulin, a Rho signalling component, can regulate NF-kappaB through binding to IKK-beta, and confers resistance to apoptosis. Oncogene 27: 2159–2169.

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Wen YY, Zhao R, Lin YL, Fournier K, Yang HY et al. (2006). DNA damage-induced protein 14-3-3 sigma inhibits protein kinase B/Akt activation and suppresses Akt-activated cancer. Cancer Res 66: 3096–3105.

    Article  CAS  PubMed  Google Scholar 

  • Zhang JS, Nelson M, Wang L, Liu W, Qian CP, Shridhar V et al. (1998). Identification and chromosomal localization of CTNNAL1, a novel protein homologous to alpha-catenin. Genomics 54: 149–154.

    Article  CAS  PubMed  Google Scholar 

  • Ziv Y, Bielopolski D, Galanty Y, Lukas C, Taya Y, Schultz DC et al. (2006). Chromatin relaxation in response to DNA double-strand breaks is modulated by a novel ATM- and KAP-1 dependent pathway. Nat Cell Biol 8: 870–876.

    Article  CAS  PubMed  Google Scholar 

  • Zou X, Ray D, Aziyu A, Christov K, Boiko AD, Gudkov AV et al. (2002). Cdk4 disruption renders primary mouse cells resistant to oncogenic transformation, leading to Arf/p53-independent senescence. Genes Dev 16: 2923–2934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants NSC 96-2311-B-006-005-MY3, NSC 97-2314-B-384-003-MY3, NSC 99-3112-B-006-011 and NSC 99-2627-B-006-003 from the National Science Council, and DOH99-TD-C-111-003 from the Department of Health, Taiwan. RNAi reagents were obtained from the National RNAi Core Facility located at the Institute of Molecular Biology/Genomic Research Center, Academia Sinica, supported by the National Research Program for Genomic Medicine Grants of National Science Council, Taiwan (NSC 97-3112-B-001-016).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T-M Hong or Y-L Chen.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information) accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, LC., Chiang, WF., Liang, CH. et al. α-Catulin knockdown induces senescence in cancer cells. Oncogene 30, 2610–2621 (2011). https://doi.org/10.1038/onc.2010.637

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.637

Keywords

This article is cited by

Search

Quick links