Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Myc overexpression brings out unexpected antiapoptotic effects of miR-34a

Abstract

Downregulation of microRNA-34a by Myc is known to be essential for tumorigenesis and improve tumor-cell survival. Conversely, upregulation of miR-34a by p53 is thought to enhance its acetylation and activity and contribute to the pro-apoptotic effects of this tumor suppressor. We sought to determine whether restoration of miR-34a levels in B-lymphoid cells with Myc overexpression would aid therapeutic apoptosis. Unexpectedly, delivery of miR-34a, which doesn't target p53 directly, severely compromised steady-state p53 levels. This effect was preceded and mediated by direct targeting of Myc, which sustained p53 protein levels via the Arf–Hdm2 pathway. As a result, in the presence of Myc, miR-34a inhibited p53-dependent bortezomib-induced apoptosis as efficiently as anti-p53 small interfering RNA. Conversely, inhibition of miR-34a using antisense RNA sensitized lymphoma cells to therapeutic apoptosis. Thus, in tumors with deregulated Myc expression, miR-34a confers drug resistance and could be considered a therapeutic target.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Adachi N, So S, Iiizumi S, Nomura Y, Murai K, Yamakawa C et al. (2006). The human pre-B cell line Nalm-6 is highly proficient in gene targeting by homologous recombination. DNA Cell Biol 25: 19–24.

    Article  CAS  Google Scholar 

  • Amaravadi RK, Yu D, Lum JJ, Bui T, Christophorou MA, Evan GI et al. (2007). Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. J Clin Invest 117: 326–336.

    Article  CAS  Google Scholar 

  • Bagchi A, Mills AA . (2008). The quest for the 1p36 tumor suppressor. Cancer Res 68: 2551–2556.

    Article  CAS  Google Scholar 

  • Barak Y, Juven T, Haffner R, Oren M . (1993). mdm2 expression is induced by wild type p53 activity. EMBO J 12: 461–468.

    Article  CAS  Google Scholar 

  • Bartel DP . (2009). MicroRNAs: target recognition and regulatory functions. Cell 136: 215–233.

    Article  CAS  Google Scholar 

  • Bhatia KG, Gutierrez MI, Huppi K, Siwarski D, Magrath IT . (1992). The pattern of p53 mutations in Burkitt′s lymphoma differs from that of solid tumors. Cancer Res 52: 4273–4276.

    CAS  PubMed  Google Scholar 

  • Bommer GT, Gerin I, Feng Y, Kaczorowski AJ, Kuick R, Love RE et al. (2007). p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol 17: 1298–1307.

    Article  CAS  Google Scholar 

  • Brachmann CB, Sherman JM, Devine SE, Cameron EE, Pillus L, Boeke JD . (1995). The SIR2 gene family, conserved from bacteria to humans, functions in silencing, cell cycle progression, and chromosome stability. Genes Dev 9: 2888–2902.

    Article  CAS  Google Scholar 

  • Calin GA, Croce CM . (2007). Chromosomal rearrangements and microRNAs: a new cancer link with clinical implications. J Clin Invest 117: 2059–2066.

    Article  CAS  Google Scholar 

  • Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E et al. (2002). Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 99: 15524–15529.

    Article  CAS  Google Scholar 

  • Cannell IG, Kong YW, Johnston SJ, Chen ML, Collins HM, Dobbyn HC et al. (2010). p38 MAPK/MK2-mediated induction of miR-34c following DNA damage prevents Myc-dependent DNA replication. Proc Natl Acad Sci USA 107: 5375–5380.

    Article  CAS  Google Scholar 

  • Chang TC, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH et al. (2007). Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell 26: 745–752.

    Article  CAS  Google Scholar 

  • Chang TC, Yu D, Lee YS, Wentzel EA, Arking DE, West KM et al. (2008). Widespread microRNA repression by Myc contributes to tumorigenesis. Nat Genet 40: 43–50.

    Article  CAS  Google Scholar 

  • Chang TC, Zeitels LR, Hwang HW, Chivukula RR, Wentzel EA, Dews M et al. (2009). Lin-28B transactivation is necessary for Myc-mediated let-7 repression and proliferation. Proc Natl Acad Sci USA 106: 3384–3389.

    Article  CAS  Google Scholar 

  • Christoffersen NR, Shalgi R, Frankel LB, Leucci E, Lees M, Klausen M et al. (2010). p53-independent upregulation of miR-34a during oncogene-induced senescence represses MYC. Cell Death Differ 17: 236–245.

    Article  CAS  Google Scholar 

  • Cole KA, Attiyeh EF, Mosse YP, Laquaglia MJ, Diskin SJ, Brodeur GM et al. (2008). A functional screen identifies miR-34a as a candidate neuroblastoma tumor suppressor gene. Mol Cancer Res 6: 735–742.

    Article  CAS  Google Scholar 

  • Corney DC, Flesken-Nikitin A, Godwin AK, Wang W, Nikitin AY . (2007). MicroRNA-34b and MicroRNA-34c are targets of p53 and cooperate in control of cell proliferation and adhesion-independent growth. Cancer Res 67: 8433–8438.

    Article  CAS  Google Scholar 

  • Corney DC, Hwang CI, Matoso A, Vogt M, Flesken-Nikitin A, Godwin AK et al. (2010). Frequent downregulation of miR-34 family in human ovarian cancers. Clin Cancer Res 16: 1119–1128.

    Article  CAS  Google Scholar 

  • Dalgard CL, Gonzalez M, deNiro JE, O'Brien JM . (2009). Differential microRNA-34a expression and tumor suppressor function in retinoblastoma cells. Invest Ophthalmol Vis Sci 50: 4542–4551.

    Article  Google Scholar 

  • Dews M, Homayouni A, Yu D, Murphy D, Sevignani C, Wentzel E et al. (2006). Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nat Genet 38: 1060–1065.

    Article  CAS  Google Scholar 

  • Galluzzi L, Aaronson SA, Abrams J, Alnemri ES, Andrews DW, Baehrecke EH et al. (2009). Guidelines for the use and interpretation of assays for monitoring cell death in higher eukaryotes. Cell Death Differ 16: 1093–1107.

    Article  CAS  Google Scholar 

  • Guessous F, Zhang Y, Kofman A, Catania A, Li Y, Schiff D et al. (2010). microRNA-34a is tumor suppressive in brain tumors and glioma stem cells. Cell Cycle 9: 1031–1036.

    Article  CAS  Google Scholar 

  • He L, He X, Lim LP, de SE, Xuan Z, Liang Y et al. (2007a). A microRNA component of the p53 tumour suppressor network. Nature 447: 1130–1134.

    Article  CAS  Google Scholar 

  • He L, He X, Lowe SW, Hannon GJ . (2007b). microRNAs join the p53 network--another piece in the tumour-suppression puzzle. Nat Rev Cancer 7: 819–822.

    Article  CAS  Google Scholar 

  • He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S et al. (2005). A microRNA polycistron as a potential human oncogene. Nature 435: 828–833.

    Article  CAS  Google Scholar 

  • Junttila MR, Evan GI . (2009). p53--a Jack of all trades but master of none. Nat Rev Cancer 9: 821–829.

    Article  CAS  Google Scholar 

  • Klein U, Lia M, Crespo M, Siegel R, Shen Q, Mo T et al. (2010). The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. Cancer Cell 17: 28–40.

    Article  CAS  Google Scholar 

  • Kong YW, Cannell IG, de Moor CH, Hill K, Garside PG, Hamilton TL et al. (2008). The mechanism of micro-RNA-mediated translation repression is determined by the promoter of the target gene. Proc Natl Acad Sci USA 105: 8866–8871.

    Article  CAS  Google Scholar 

  • Lal A, Navarro F, Maher CA, Maliszewski LE, Yan N, O'Day E et al. (2009). miR-24 Inhibits cell proliferation by targeting E2F2, MYC, and other cell-cycle genes via binding to “seedless” 3′UTR microRNA recognition elements. Mol Cell 35: 610–625.

    Article  CAS  Google Scholar 

  • Lin CH, Jackson AL, Guo J, Linsley PS, Eisenman RN . (2009). Myc-regulated microRNAs attenuate embryonic stem cell differentiation. EMBO J 28: 3157–3170.

    Article  CAS  Google Scholar 

  • Lindstrom MS, Klangby U, Wiman KG . (2001). p14ARF homozygous deletion or MDM2 overexpression in Burkitt lymphoma lines carrying wild type p53. Oncogene 20: 2171–2177.

    Article  CAS  Google Scholar 

  • Lindstrom MS, Wiman KG . (2002). Role of genetic and epigenetic changes in Burkitt lymphoma. Semin Cancer Biol 12: 381–387.

    Article  CAS  Google Scholar 

  • Linsley PS, Schelter J, Burchard J, Kibukawa M, Martin MM, Bartz SR et al. (2007). Transcripts targeted by the microRNA-16 family cooperatively regulate cell cycle progression. Mol Cell Biol 27: 2240–2252.

    Article  CAS  Google Scholar 

  • Lodygin D, Tarasov V, Epanchintsev A, Berking C, Knyazeva T, Korner H et al. (2008). Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer. Cell Cycle 7: 2591–2600.

    Article  CAS  Google Scholar 

  • Luan S, Sun L, Huang F . (2010). MicroRNA-34a: a novel tumor suppressor in p53-mutant glioma cell line U251. Arch Med Res 41: 67–74.

    Article  CAS  Google Scholar 

  • Miranda KC, Huynh T, Tay Y, Ang YS, Tam WL, Thomson AM et al. (2006). A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell 126: 1203–1217.

    Article  CAS  Google Scholar 

  • Mu P, Han YC, Betel D, Yao E, Squatrito M, Ogrodowski P et al. (2009). Genetic dissection of the miR-1792 cluster of microRNAs in Myc-induced B-cell lymphomas. Genes Dev 23: 2806–2811.

    Article  CAS  Google Scholar 

  • Navarro F, Gutman D, Meire E, Caceres M, Rigoutsos I, Bentwich Z et al. (2009). miR-34a contributes to megakaryocytic differentiation of K562 cells independently of p53. Blood 114: 2181–2192.

    Article  CAS  Google Scholar 

  • O'Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT . (2005). c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435: 839–843.

    Article  CAS  Google Scholar 

  • Olive V, Bennett MJ, Walker JC, Ma C, Jiang I, Cordon-Cardo C et al. (2009). miR-19 is a key oncogenic component of mir-17-92. Genes Dev 23: 2839–2849.

    Article  CAS  Google Scholar 

  • Ota A, Tagawa H, Karnan S, Tsuzuki S, Karpas A, Kira S et al. (2004). Identification and characterization of a novel gene, C13orf25, as a target for 13q31-q32 amplification in malignant lymphoma. Cancer Res 64: 3087–3095.

    Article  CAS  Google Scholar 

  • Pajic A, Spitkovsky D, Christoph B, Kempkes B, Schuhmacher M, Staege MS et al. (2000). Cell cycle activation by c-myc in a burkitt lymphoma model cell line. Int J Cancer 87: 787–793.

    Article  CAS  Google Scholar 

  • Raver-Shapira N, Marciano E, Meiri E, Spector Y, Rosenfeld N, Moskovits N et al. (2007). Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol Cell 26: 731–743.

    Article  CAS  Google Scholar 

  • Sala A, Bettuzzi S, Pucci S, Chayka O, Dews M, Thomas-Tikhonenko A . In: Bettuzzi S and Pucci S (eds). Advances in Cancer Research, Volume 105: Clusterin, part B. Elsevier: USA, 2009, pp 116–127.

    Google Scholar 

  • Schuhmacher M, Kohlhuber F, Holzel M, Kaiser C, Burtscher H, Jarsch M et al. (2001). The transcriptional program of a human B cell line in response to Myc. Nucl Acids Res 29: 397–406.

    Article  CAS  Google Scholar 

  • Sykes SM, Mellert HS, Holbert MA, Li K, Marmorstein R, Lane WS et al. (2006). Acetylation of the p53 DNA-binding domain regulates apoptosis induction. Mol Cell 24: 841–851.

    Article  CAS  Google Scholar 

  • Tarasov V, Jung P, Verdoodt B, Lodygin D, Epanchintsev A, Menssen A et al. (2007). Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and G1-arrest. Cell Cycle 6: 1586–1593.

    Article  CAS  Google Scholar 

  • Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z et al. (2004). in vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303: 844–848.

    Article  CAS  Google Scholar 

  • Vaziri H, Dessain SK, Ng EE, Imai SI, Frye RA, Pandita TK et al. (2001). hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 107: 149–159.

    Article  CAS  Google Scholar 

  • Ventura A, Young AG, Winslow MM, Lintault L, Meissner A, Erkeland SJ et al. (2008). Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell 132: 875–886.

    Article  CAS  Google Scholar 

  • Welch C, Chen Y, Stallings RL . (2007). MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene 26: 5017–5022.

    Article  CAS  Google Scholar 

  • Wu X, Bayle JH, Olson D, Levine AJ . (1993). The p53-mdm-2 autoregulatory feedback loop. Genes Dev 7: 1126–1132.

    Article  CAS  Google Scholar 

  • Xiao C, Srinivasan L, Calado DP, Patterson HC, Zhang B, Wang J et al. (2008). Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes. Nat Immunol 9: 405–414.

    Article  CAS  Google Scholar 

  • Yamakuchi M, Ferlito M, Lowenstein CJ . (2008). miR-34a repression of SIRT1 regulates apoptosis. Proc Natl Acad Sci USA 105: 13421–13426.

    Article  CAS  Google Scholar 

  • Yamakuchi M, Lowenstein CJ . (2009). MiR-34, SIRT1 and p53: the feedback loop. Cell Cycle 8: 712–715.

    Article  CAS  Google Scholar 

  • Yu D, Carroll M, Thomas-Tikhonenko A . (2007). p53 status dictates responses of B lymphomas to monotherapy with proteasome inhibitors. Blood 109: 4936–4943.

    Article  CAS  Google Scholar 

  • Yu D, Dews M, Park A, Tobias JW, Thomas-Tikhonenko A . (2005). Inactivation of Myc in murine two-hit B lymphomas causes dormancy with elevated levels of interleukin 10 receptor and CD20: implications for adjuvant therapies. Cancer Res 65: 5454–5461.

    Article  CAS  Google Scholar 

  • Yu D, Thomas-Tikhonenko A . (2002). A non-transgenic mouse model for B-cell lymphoma: in vivo infection of p53-null bone marrow progenitors by a Myc retrovirus is sufficient for tumorigenesis. Oncogene 21: 1922–1927.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Drs Joshua Mendell and Tsung-Cheng Chang (Johns Hopkins University) for sharing unpublished data on miR-34a function in B-cells. Current and past members of our laboratories (in particular Drs Duonan Yu, James Psathas, Michael Dews and Elaine Chung) are acknowledged for many stimulating discussions. We are grateful to the Rosetta Gene Expression Laboratory for performing microarray hybridization experiments and Miho Kibukawa (Merck & Co., Inc.)—for technical support. We thank Dr Dirk Eick (GSF Research Centre, Munich) for P493-6 cells, Dr Carlo Croce (Ohio State University, Columbus) for GM607 cells and Dr Joelle Wiels (Institut Gustave Roussy, Villejuif, France) for Ly47cells. This work was supported by US National Institutes of Health grant CA 122334 to ATT and the Institutional Development Fund of the Children's Hospital of Philadelphia (ATT), as well as NIH grants R01CA098172-07, R21CA152786-01 and R01CA090465-08 to SBM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Thomas-Tikhonenko.

Ethics declarations

Competing interests

Michele Cleary is an employee of Merck Inc. The authors declare no further competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sotillo, E., Laver, T., Mellert, H. et al. Myc overexpression brings out unexpected antiapoptotic effects of miR-34a. Oncogene 30, 2587–2594 (2011). https://doi.org/10.1038/onc.2010.634

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.634

Keywords

This article is cited by

Search

Quick links