Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Human papillomavirus type 16 E6 induces cervical cancer cell migration through the p53/microRNA-23b/urokinase-type plasminogen activator pathway

Abstract

Deregulation of microRNA (miRNA or miR) expression in human cervical cancer is associated frequently with human papillomavirus (HPV) integration. miR-23b is often downregulated in HPV-associated cervical cancer. Interestingly, urokinase-type plasminogen activator (uPA), the miR-23b target, is detected in cervical cancer, but not in normal cervical tissues. Thus, the importance of miR-23b and uPA in HPV-associated cervical cancer development is investigated. In this study, the high-risk subtype HPV-16 E6 oncoprotein was found to decrease the expression of miR-23b, increase the expression of uPA, and thus induce the migration of human cervical carcinoma SiHa and CaSki cells. uPA is the target gene for miR-23b as the miR repressed uPA expression and interacted with the 3′-untranslated region of uPA mRNA. The tumor suppressor p53 is known to be inactivated by HPV-16 E6. A consensus p53 binding site is detected in the promoter region of miR-23b, whereas p53 trans-activated and also interacted with the miR’s promoter. Therefore, p53 is believed to mediate the HPV-16 E6 downregulation of miR-23b. From the above, miR-23b/uPA are confirmed to be involved in HPV-16 E6-associated cervical cancer development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • Andreasen PA, Kjoller L, Christensen L, Duffy MJ . (1997). The urokinase-type plasminogen activator system in cancer metastasis: a review. Int J Cancer 72: 1–22.

    Article  CAS  Google Scholar 

  • Bai L, Wei L, Wang J, Li X, He P . (2006). Extended effects of human papillomavirus 16 E6-specific short hairpin RNA on cervical carcinoma cells. Int J Gynecol Cancer 16: 718–729.

    Article  CAS  Google Scholar 

  • Braun CJ, Zhang X, Savelyeva I, Wolff S, Moll UM, Schepeler T et al. (2008). p53-responsive micrornas 192 and 215 are capable of inducing cell cycle arrest. Cancer Res 68: 10094–10104.

    Article  CAS  Google Scholar 

  • Brummelkamp TR, Bernards R, Agami R . (2002). A system for stable expression of short interfering RNAs in mammalian cells. Science 296: 550–553.

    Article  CAS  Google Scholar 

  • Calin GA, Croce CM . (2006). MicroRNA signatures in human cancers. Nat Rev Cancer 6: 857–866.

    Article  CAS  Google Scholar 

  • Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S et al. (2004). Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 101: 2999–3004.

    Article  CAS  Google Scholar 

  • Chang TC, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH et al. (2007). Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell 26: 745–752.

    Article  CAS  Google Scholar 

  • Dass K, Ahmad A, Azmi AS, Sarkar SH, Sarkar FH . (2008). Evolving role of uPA/uPAR system in human cancers. Cancer Treat Rev 34: 122–136.

    Article  CAS  Google Scholar 

  • Davis BN, Hata A . (2009). Regulation of microRNA biogenesis: a miRiad of mechanisms. Cell Commun Signal 7: 18.

    Article  Google Scholar 

  • Diederichs S, Haber DA . (2006). Sequence variations of microRNAs in human cancer: alterations in predicted secondary structure do not affect processing. Cancer Res 66: 6097–6104.

    Article  CAS  Google Scholar 

  • Duffy MJ, Maguire TM, McDermott EW, O'Higgins N . (1999). Urokinase plasminogen activator: a prognostic marker in multiple types of cancer. J Surg Oncol 71: 130–135.

    Article  CAS  Google Scholar 

  • Esquela-Kerscher A, Slack FJ . (2006). Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer 6: 259–269.

    Article  CAS  Google Scholar 

  • Garzon R, Fabbri M, Cimmino A, Calin GA, Croce CM . (2006). microRNA expression and function in cancer. Trends Mol Med 12: 580–587.

    Article  CAS  Google Scholar 

  • Kulshreshtha R, Ferracin M, Wojcik SE, Garzon R, Alder H, Agosto-Perez FJ et al. (2007). A microRNA signature of hypoxia. Mol Cell Biol 27: 1859–1867.

    Article  CAS  Google Scholar 

  • Kunz C, Pebler S, Otte J, von der Ahe D . (1995). Differential regulation of plasminogen activator and inhibitor gene transcription by the tumor suppressor p53. Nucleic Acids Res 23: 3710–3717.

    Article  CAS  Google Scholar 

  • Lee JW, Choi CH, Choi JJ, Park YA, Kim SJ, Hwang SY et al. (2008). Altered microRNA expression in cervical carcinomas. Clin Cancer Res 14: 2535–2542.

    Article  CAS  Google Scholar 

  • Lui WO, Pourmand N, Patterson BK, Fire A . (2007). Patterns of known and novel small RNAs in human cervical cancer. Cancer Res 67: 6031–6043.

    Article  CAS  Google Scholar 

  • Martinez I, Gardiner AS, Board KF, Monzon FA, Edwards RP, Khan SA . (2008). Human papillomavirus type 16 reduces the expression of microRNA-218 in cervical carcinoma cells. Oncogene 27: 2575–2582.

    Article  CAS  Google Scholar 

  • Munoz N, Bosch FX, de Sanjose S, Herrero R, Castellsague X, Shah KV et al. (2003). Epidemiologic classification of human papillomavirus types associated with cervical cancer. N Engl J Med 348: 518–527.

    Article  Google Scholar 

  • Muralidhar B, Goldstein LD, Ng G, Winder DM, Palmer RD, Gooding EL et al. (2007). Global microRNA profiles in cervical squamous cell carcinoma depend on drosha expression levels. J Pathol 212: 368–377.

    Article  CAS  Google Scholar 

  • Riethdorf L, Riethdorf S, Petersen S, Bauer M, Herbst H, Janicke F et al. (1999). Urokinase gene expression indicates early invasive growth in squamous cell lesions of the uterine cervix. J Pathol 189: 245–250.

    Article  CAS  Google Scholar 

  • Salvi A, Sabelli C, Moncini S, Venturin M, Arici B, Riva P et al. (2009). MicroRNA-23b mediates urokinase and c-met downmodulation and a decreased migration of human hepatocellular carcinoma cells. FEBS J 276: 2966–2982.

    Article  CAS  Google Scholar 

  • Scaria V, Jadhav V . (2007). microRNAs in viral oncogenesis. Retrovirology 4: 82.

    Article  Google Scholar 

  • Shetty P, Velusamy T, Bhandary YP, Shetty RS, Liu MC, Shetty S . (2008). Urokinase expression by tumor suppressor protein p53: a novel role in mRNA turnover. Am J Respir Cell Mol Biol 39: 364–372.

    Article  CAS  Google Scholar 

  • Soliman PT, Slomovitz BM, Wolf JK . (2004). Mechanisms of cervical cancer. Drug Discovery Today 1: 253–258.

    Article  CAS  Google Scholar 

  • Tarasov V, Jung P, Verdoodt B, Lodygin D, Epanchintsev A, Menssen A et al. (2007). Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: MiR-34a is a p53 target that induces apoptosis and G1-arrest. Cell Cycle 6: 1586–1593.

    Article  CAS  Google Scholar 

  • Turner MA, Palefsky JM . (1995). Urokinase plasminogen activator expression by primary and HPV 16-transformed keratinocytes. Clin Exp Metast 13: 260–268.

    Article  CAS  Google Scholar 

  • Walboomers JM, Jacobs MV, Manos MM, Bosch FX, Kummer JA, Shah KV et al. (1999). Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol 189: 12–19.

    Article  CAS  Google Scholar 

  • Wang X, Wang HK, McCoy JP, Banerjee NS, Rader JS, Broker TR et al. (2009). Oncogenic HPV infection interrupts the expression of tumor-suppressive miR-34a through viral oncoprotein E6. RNA 15: 637–647.

    Article  CAS  Google Scholar 

  • Wu W, Zou M, Brickley DR, Pew T, Conzen SD . (2006). Glucocorticoid receptor activation signals through forkhead transcription factor 3a in breast cancer cells. Mol Endocrinol 20: 2304–2314.

    Article  CAS  Google Scholar 

  • Zhang B, Pan X, Cobb GP, Anderson TA . (2007). microRNAs as oncogenes and tumor suppressors. Dev Biol 302: 1–12.

    Article  CAS  Google Scholar 

  • Zuna RE, Allen RA, Moore WE, Mattu R, Dunn ST . (2004). Comparison of human papillomavirus genotypes in high-grade squamous intraepithelial lesions and invasive cervical carcinoma: evidence for differences in biologic potential of precursor lesions. Mod Pathol 17: 1314–1322.

    Article  Google Scholar 

  • zur Hausen H . (2002). Papillomaviruses and cancer: From basic studies to clinical application. Nat Rev Cancer 2: 342–350.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The study is supported by grants from Hong Kong Research Grants and Council Earmarked Grants 466908, 467609.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T T Kwok.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Au Yeung, C., Tsang, T., Yau, P. et al. Human papillomavirus type 16 E6 induces cervical cancer cell migration through the p53/microRNA-23b/urokinase-type plasminogen activator pathway. Oncogene 30, 2401–2410 (2011). https://doi.org/10.1038/onc.2010.613

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.613

Keywords

This article is cited by

Search

Quick links