Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Cytoplasmic sequestration of p53 promotes survival in leukocytes transformed by Theileria

Abstract

The function of the p53 protein as the central effector molecule of the p53 apoptotic pathway was investigated in a reversible model of epigenetic transformation. The infection of bovine leukocytes by the intracellular protozoan parasite Theileria annulata results in parasite-dependent transformation and proliferation of the host cells. We found p53 to be largely localized in the host cell cytoplasm and associated with the parasite membrane of isolated schizonts. Curing infected cells of the parasite with the theilericidal drug buparvaquone resulted in a time-dependent translocation of p53 into the host cell nucleus and the upregulation of the proapoptotic Bax and Apaf-1 and the downregulation of the anti-apoptotic Bcl-2 proteins. Although buparvaquone treatment led to apoptosis of the host cell, inhibition of either p53 or Bax significantly reduced buparvaquone-induced apoptosis of the transformed cells. Thus, the p53 apoptotic pathway of host cells is not induced by infection and transformation with Theileria by a mechanism involving cytoplasmic sequestration of p53. The close association of host cell p53 with the parasite membrane implies that the parasite either interacts directly with p53 or mediates cytoplasmic sequestration of p53 by interacting with other host cell proteins regulating p53 localization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  • Adams JM, Cory S . (2002). Apoptosomes: engines for caspase activation. Curr Opin Cell Biol 14: 715–720.

    Article  CAS  PubMed  Google Scholar 

  • Ahmed JS, Rothert M, Steuber S, Schein E . (1989). In vitro proliferative and cytotoxic responses of PBL from Theileria annulata-immune cattle. Zentralbl Veterinarmed B 36: 584–592.

    CAS  PubMed  Google Scholar 

  • Ahmed JS, Schnittger L, Mehlhorn H . (1999). Theileria schizonts induce fundamental alterations in their host cells. Parasitol Res 85: 527–538.

    Article  CAS  PubMed  Google Scholar 

  • Bakheit MA, Endl E, Ahmed JS, Seitzer U . (2006a). Purification of macroschizonts of a Sudanese isolate of Theileria lestoquardi (T. lestoquardi [Atbara]). Ann NY Acad Sci 1081: 453–462.

    Article  CAS  PubMed  Google Scholar 

  • Bakheit MA, Scholzen T, Ahmed JS, Seitzer U . (2006b). Molecular characterization of a Theileria lestoquardi gene encoding for immunogenic protein splice variants. Parasitol Res 100: 161–170.

    Article  CAS  PubMed  Google Scholar 

  • Bosari S, Viale G, Roncalli M, Graziani D, Borsani G, Lee AK et al. (1995). p53 gene mutations, p53 protein accumulation and compartmentalization in colorectal adenocarcinoma. Am J Pathol 147: 790–798.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boyd JM, Malstrom S, Subramanian T, Venkatesh LK, Schaeper U, Elangovan B et al. (1994). Adenovirus E1B 19 kDa and Bcl-2 proteins interact with a common set of cellular proteins. Cell 79: 341–351.

    Article  CAS  PubMed  Google Scholar 

  • Dobbelaere DA, Prospero TD, Roditi IJ, Eichhorn M, Williams RO . (1988). Theileria parva infection induce autocrine growth of bovine lymphocytes. Proc Natl Acad Sci USA 85: 4730–4734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fortin A, Cregan SP, MacLaurin JG, Kushwaha N, Hickman ES, Thompson CS et al. (2001). APAF1 is a key transcriptional target for p53 in the regulation of neuronal cell death. J Cell Biol 155: 207–216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galley Y, Hagens G, Glaser I, Davis W, Eichhorn M, Dobbelaere D . (1997). Jun NH2-terminal kinase is constitutively activated in T cells transformed by the intracellular parasite Theileria parva. Proc Natl Acad Sci USA 94: 5119–5124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gardner MJ, Bishop R, Shah T, de Villiers EP, Carlton JM, Hall N et al. (2005). Genome sequence of Theileria parva, a bovine pathogen that transforms lymphocytes. Science 309: 134–137.

    Article  CAS  PubMed  Google Scholar 

  • Guergnon J, Dessauge F, Langsley G, Garcia A . (2003). Apoptosis of Theileria-infected lymphocytes induced upon parasite death involves activation of caspases 9 and 3. Biochemie 85: 771–776.

    Article  CAS  Google Scholar 

  • Heussler VT, Kuenzi P, Fraga F, Schwab RA, Hemmings BA, Dobbelaere DA . (2001). The Akt/PKB pathway is constitutively activated in Theileria-transformed leucocytes, but does not directly control constitutive NF-kappaB activation. Cell Microbiol 3: 537–550.

    Article  CAS  PubMed  Google Scholar 

  • Heussler VT, Rottenberg S, Schwab R, Küenzi P, Fernandez PC, McKellar S et al. (2002). Hijacking of host cell IKK signalosomes by the transforming parasite Theileria. Science 298: 1033–1036.

    Article  CAS  PubMed  Google Scholar 

  • Knippschild U, Oren M, Deppert W . (1996). Abrogation of wild-type p53 mediated growth-inhibition by nuclear exclusion. Oncogene 12: 1755–1765.

    CAS  PubMed  Google Scholar 

  • Lane DP, Crawford LV . (1979). T antigen is bound to a host protein in SV40-transformed cells. Nature 278: 261–263.

    Article  CAS  PubMed  Google Scholar 

  • Levine AJ . (1997). p53, the cellular gatekeeper for growth and division. Cell 88: 323–331.

    Article  CAS  PubMed  Google Scholar 

  • Liang SH, Clarke MF . (2001). Regulation of p53 localization. Eur J Biochem 268: 2779–2783.

    Article  CAS  PubMed  Google Scholar 

  • McHardy N, Morgan DW . (1985). Treatment of Theileria annulata infection in calves with parvaquone. Res Vet Sci 39: 1–4.

    Article  CAS  PubMed  Google Scholar 

  • McHardy N, Wekesa LS . (1985). In: Irvin AD (ed). Buparvaquone BW 720C: a new antitheilerial napthoquinone—its role in the therapy and prophylaxis of theileriosis. Immunization Against Theileriosis in Africa. International Laboratory for Research on Animal Diseases: Nairobi, Kenya. pp 88.

    Google Scholar 

  • Miyashita T, Reed JC . (1995). Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80: 293–299.

    Article  CAS  PubMed  Google Scholar 

  • Moll UM, LaQuaglia M, Benard J, Riou G . (1995). Wild-type p53 protein undergoes cytoplasmic sequestration in undifferentiated neuroblastomas but not in differentiated tumors. Proc Natl Acad Sci USA 92: 4407–4411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moll UM, Ostermeyer AG, Haladay R, Winkfield B, Frazier M, Zambetti G . (1996). Cytoplasmic sequestration of wild-type p53 protein impairs the G1 checkpoint after DNA damage. Mol Cell Biol 16: 1126–1137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moll UM, Riou G, Levine AJ . (1992). Two distinct mechanisms alter p53 in breast cancer: mutation and nuclear exclusion. Proc Natl Acad Sci USA 89: 7262–7266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nikolaev AY, Li M, Puskas N, Qin J, Gu W . (2003). Parc: a cytoplasmic anchor for p53. Cell 112: 29–40.

    Article  CAS  PubMed  Google Scholar 

  • O'Brate A, Giannakakou P . (2003). The importance of p53 location: nuclear or cytoplasmic zip code? Drug Resist Updat 6: 313–322.

    Article  CAS  PubMed  Google Scholar 

  • Oliner JD, Pietenpol JA, Thiagalingam S, Gyuris J, Kinzler KW, Vogelstein B . (1993). Oncoprotein MDM2 conceals the activation domain of tumour suppressor p53. Nature 362: 857–860.

    Article  CAS  PubMed  Google Scholar 

  • Pain A, Renauld H, Berriman M, Murphy L, Yeats CA, Weir W et al. (2005). Genome of the host-cell transforming parasite Theileria annulata compared with T. parva. Science 309: 131–133.

    Article  CAS  PubMed  Google Scholar 

  • Scheffner M, Werness BA, Huibregtse JM, Levine AJ, Howley PM . (1990). The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 63: 1129–1136.

    Article  CAS  PubMed  Google Scholar 

  • Schlamp CL, Poulsen GL, Nork TM, Nickells RW . (1997). Nuclear exclusion of wild-type p53 in immortalized human retinoblastoma cells. J Natl Cancer Inst 89: 1530–1536.

    Article  CAS  PubMed  Google Scholar 

  • Schneider I, Haller D, Seitzer U, Beyer D, Ahmed JS . (2004). Molecular genetic characterization and subcellular localization of a putative Theileria annulata membrane protein. Parasitol Res 94: 405–415.

    Article  PubMed  Google Scholar 

  • Seitzer U, Schnittger L, Boguslawski K, Ahmed JS . (2006). Investigation of MAP kinase activation in Theileria-infected cell lines. Ann NY Acad Sci 1081: 473–475.

    Article  PubMed  Google Scholar 

  • Shayan P, Gerlach C, Hügel FU, Kay G, Campbell JD, Gerdes J et al. (1999). The proliferation-associated nuclear protein Ki-67 in the bovine system: partial characterisation and its application for determination of the proliferation of Theileria-infected bovine cells. Parasitol Res 85: 613–620.

    Article  CAS  PubMed  Google Scholar 

  • Shimizu S, Narita M, Tsujimoto Y . (1999). Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 399: 483–487.

    Article  CAS  PubMed  Google Scholar 

  • Sun XF, Carstensen JM, Zhang H, Stal O, Wingren S, Hatschek T et al. (1992). Prognostic significance of cytoplasmic p53 oncoprotein in colorectal adenocarcinoma. Lancet 340: 1369–1373.

    Article  CAS  PubMed  Google Scholar 

  • Toye P, Nyanjui J, Goddeeris B, Musoke AJ . (1996). Identification of neutralization and diagnostic epitopes on PIM, the polymorphic immunodominant molecule of Theileria parva. Infect Immun 64: 1832–1838.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ueda H, Ullrich SJ, Gangemi JD, Kappel CA, Ngo L, Feitelson MA et al. (1995). Functional inactivation but not structural mutation of p53 causes liver cancer. Nat Genet 9: 41–47.

    Article  CAS  PubMed  Google Scholar 

  • Vogelstein B, Lane D, Levine AJ . (2000). Surfing the p53 network. Nature 408: 307–310.

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Mehew JW, Heckman CA, Arcinas M, Boxer LM . (2001). Negative regulation of bcl-2 expression by p53 in hematopoietic cells. Oncogene 20: 240–251.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a grant from the European Commission INCO-DEV Program (Contract Grant Number: ICA4-CT-2000-30028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U Seitzer.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haller, D., Mackiewicz, M., Gerber, S. et al. Cytoplasmic sequestration of p53 promotes survival in leukocytes transformed by Theileria. Oncogene 29, 3079–3086 (2010). https://doi.org/10.1038/onc.2010.61

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.61

Keywords

This article is cited by

Search

Quick links