Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Myc/miR-378/TOB2/cyclin D1 functional module regulates oncogenic transformation

Abstract

The c-Myc transcription factor activates a cascade of downstream targets to form a complex transcriptional program that ultimately leads to cellular transformation. Although a large number of protein-encoding genes as well as non-coding RNAs were identified as Myc targets, only a few have been validated to be functionally important for c-Myc-driven transformation. Here, we identify a microRNA (miRNA), miR-378, as a novel target of the c-Myc oncoprotein that is able to cooperate with activated Ras or HER2 to promote cellular transformation. Mechanistically, miR-378 achieves this oncogenic effect, at least in part, by targeting and inhibiting the anti-proliferative BTG family member, TOB2, which is further elucidated as a candidate tumor suppressor to transcriptionally repress proto-oncogene cyclin D1. Therefore, our study identifies miR-378-TOB2-cyclin D1 as a functional module to mediate the cross talk between Myc and Ras signaling in cellular transformation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Ambros V . (2004). The functions of animal microRNAs. Nature 431: 350–355.

    Article  CAS  Google Scholar 

  • Cappellen D, Schlange T, Bauer M, Maurer F, Hynes NE . (2007). Novel c-MYC target genes mediate differential effects on cell proliferation and migration. EMBO Rep 8: 70–76.

    Article  CAS  Google Scholar 

  • Chang TC, Yu D, Lee YS, Wentzel EA, Arking DE, West KM et al. (2008). Widespread microRNA repression by Myc contributes to tumorigenesis. Nat Genet 40: 43–50.

    Article  CAS  Google Scholar 

  • Conzen SD, Gottlob K, Kandel ES, Khanduri P, Wagner AJ, O'Leary M et al. (2000). Induction of cell cycle progression and acceleration of apoptosis are two separable functions of c-Myc: transrepression correlates with acceleration of apoptosis. Mol Cell Biol 20: 6008–6018.

    Article  CAS  Google Scholar 

  • D'Cruz CM, Gunther EJ, Boxer RB, Hartman JL, Sintasath L, Moody SE et al. (2001). c-MYC induces mammary tumorigenesis by means of a preferred pathway involving spontaneous Kras2 mutations. Nat Med 7: 235–239.

    Article  CAS  Google Scholar 

  • Dang CV . (1999). c-Myc target genes involved in cell growth, apoptosis, and metabolism. Mol Cell Biol 19: 1–11.

    Article  CAS  Google Scholar 

  • Ebert MS, Neilson JR, Sharp PA . (2007). MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Method 4: 721–726.

    Article  CAS  Google Scholar 

  • Elenbaas B, Spirio L, Koerner F, Fleming MD, Zimonjic DB, Donaher JL et al. (2001). Human breast cancer cells generated by oncogenic transformation of primary mammary epithelial cells. Genes Dev 15: 50–65.

    Article  CAS  Google Scholar 

  • Gao P, Tchernyshyov I, Chang TC, Lee YS, Kita K, Ochi T et al. (2009). c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature 458: 762–765.

    Article  CAS  Google Scholar 

  • Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G et al. (2008). The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 10: 593–601.

    Article  CAS  Google Scholar 

  • He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S et al. (2005). A microRNA polycistron as a potential human oncogene. Nature 435: 828–833.

    Article  CAS  Google Scholar 

  • Jiang X, Tan J, Li J, Kivimae S, Yang X, Zhuang L et al. (2008). DACT3 is an epigenetic regulator of Wnt/beta-catenin signaling in colorectal cancer and is a therapeutic target of histone modifications. Cancer Cell 13: 529–541.

    Article  CAS  Google Scholar 

  • Kendall SD, Linardic CM, Adam SJ, Counter CM . (2005). A network of genetic events sufficient to convert normal human cells to a tumorigenic state. Cancer Res 65: 9824–9828.

    Article  CAS  Google Scholar 

  • Korpal M, Lee ES, Hu G, Kang Y . (2008). The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem 283: 14910–14914.

    Article  CAS  Google Scholar 

  • Kuttler F, Ame P, Clark H, Haughey C, Mougin C, Cahn JY et al. (2001). c-myc box II mutations in Burkitt's lymphoma-derived alleles reduce cell-transformation activity and lower response to broad apoptotic stimuli. Oncogene 20: 6084–6094.

    Article  CAS  Google Scholar 

  • Ma L, Young J, Prabhala H, Pan E, Mestdagh P, Muth D et al. (2010). miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat Cell Biol 12: 247–256.

    Article  CAS  Google Scholar 

  • Meyer N, Penn LZ . (2008). Reflecting on 25 years with MYC. Nat Rev Cancer 8: 976–990.

    Article  CAS  Google Scholar 

  • Oster SK, Mao DY, Kennedy J, Penn LZ . (2003). Functional analysis of the N-terminal domain of the Myc oncoprotein. Oncogene 22: 1998–2010.

    Article  CAS  Google Scholar 

  • Sears R, Nuckolls F, Haura E, Taya Y, Tamai K, Nevins JR . (2000). Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability. Genes Dev 14: 2501–2514.

    Article  CAS  Google Scholar 

  • Shapiro GI . (2006). Cyclin-dependent kinase pathways as targets for cancer treatment. J Clin Oncol 24: 1770–1783.

    Article  CAS  Google Scholar 

  • Sinn E, Muller W, Pattengale P, Tepler I, Wallace R, Leder P . (1987). Coexpression of MMTV/v-Ha-ras and MMTV/c-myc genes in transgenic mice: synergistic action of oncogenes in vivo. Cell 49: 465–475.

    Article  CAS  Google Scholar 

  • Stacey D, Kazlauskas A . (2002). Regulation of Ras signaling by the cell cycle. Curr Opin Genet Dev 12: 44–46.

    Article  CAS  Google Scholar 

  • Suzuki T, Junko KT, Ajima R, Nakamura T, Yoshida Y, Yamamoto T . (2002). Phosphorylation of three regulatory serines of Tob by Erk1 and Erk2 is required for Ras-mediated cell proliferation and transformation. Genes Dev 16: 1356–1370.

    Article  Google Scholar 

  • Tan J, Yang X, Zhuang L, Jiang X, Chen W, Lee PL et al. (2007). Pharmacologic disruption of polycomb-repressive complex 2-mediated gene repression selectively induces apoptosis in cancer cells. Genes Dev 21: 1050–1063.

    Article  CAS  Google Scholar 

  • Valastyan S, Reinhardt F, Benaich N, Calogrias D, Szasz AM, Wang ZC et al. (2009). A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell 137: 1032–1046.

    Article  CAS  Google Scholar 

  • Winkler GS . (2010). The mammalian anti-proliferative BTG/Tob protein family. J Cell Physiol 222: 66–72.

    Article  CAS  Google Scholar 

  • Yang X, Feng M, Jiang X, Wu Z, Li Z, Aau M et al. (2009). miR-449a and miR-449b are direct transcriptional targets of E2F1 and negatively regulate pRb-E2F1 activity through a feedback loop by targeting CDK6 and CDC25A. Genes Dev 23: 2388–2393.

    Article  CAS  Google Scholar 

  • Yoshida Y, Nakamura T, Komoda M, Satoh H, Suzuki T, Tsuzuku JK et al. (2003). Mice lacking a transcriptional corepressor Tob are predisposed to cancer. Genes Dev 17: 1201–1206.

    Article  CAS  Google Scholar 

  • Zeller KI, Zhao X, Lee CW, Chiu KP, Yao F, Yustein JT et al. (2006). Global mapping of c-Myc binding sites and target gene networks in human B cells. Proc Natl Acad Sci USA 103: 17834–17839.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr William Hahn for the HMLE and HMLER cells. This work was supported by Agency for Science, Technology & Research (A*Star) of Singapore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q Yu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, M., Li, Z., Aau, M. et al. Myc/miR-378/TOB2/cyclin D1 functional module regulates oncogenic transformation. Oncogene 30, 2242–2251 (2011). https://doi.org/10.1038/onc.2010.602

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.602

Keywords

This article is cited by

Search

Quick links