Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Histone acetylation by CBP and p300 at double-strand break sites facilitates SWI/SNF chromatin remodeling and the recruitment of non-homologous end joining factors

Abstract

Non-homologous end joining (NHEJ) is a major repair pathway for DNA double-strand breaks (DSBs) generated by ionizing radiation (IR) and anti-cancer drugs. Therefore, inhibiting the activity of proteins involved in this pathway is a promising way of sensitizing cancer cells to both radiotherapy and chemotherapy. In this study, we developed an assay for evaluating NHEJ activity against DSBs in chromosomal DNA in human cells to identify the chromatin modification/remodeling proteins involved in NHEJ. We showed that ablating the activity of the homologous histone acetyltransferases, CBP and p300, using inhibitors or small interfering RNAs-suppressed NHEJ. Ablation of CBP or p300 impaired IR-induced DSB repair and sensitized lung cancer cells to IR and the anti-cancer drug, etoposide, which induces DSBs that are repaired by NHEJ. The CBP/p300 proteins were recruited to sites of DSBs and their ablation suppressed acetylation of lysine 18 within histone H3, and lysines 5, 8, 12, and 16 within histone H4, at the DSB sites. This then suppressed the recruitment of KU70 and KU80, both key proteins for NHEJ, to the DSB sites. Ablation of CBP/p300 also impaired the recruitment of BRM, a catalytic subunit of the SWI/SNF complex involved in chromatin remodeling at DSB sites. These results indicate that CBP and p300 function as histone H3 and H4 acetyltransferases at DSB sites in NHEJ and facilitate chromatin relaxation. Therefore, inhibition CBP and p300 activity may sensitize cancer cells to radiotherapy and chemotherapy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

DSB:

DNA double-strand breaks

NHEJ:

non-homologous end joining

HAT:

histone acetyltransferase

ChIP:

chromatin immunoprecipitation

IR:

ionizing radiation

References

  • Adachi N, Suzuki H, Iiizumi S, Koyama H . (2003). Hypersensitivity of nonhomologous DNA end-joining mutants to VP-16 and ICRF-193: implications for the repair of topoisomerase II-mediated DNA damage. J Biol Chem 278: 35897–35902.

    Article  CAS  PubMed  Google Scholar 

  • Balasubramanyam K, Swaminathan V, Ranganathan A, Kundu TK . (2003). Small molecule modulators of histone acetyltransferase p300. J Biol Chem 278: 19134–19140.

    Article  CAS  PubMed  Google Scholar 

  • Balasubramanyam K, Varier RA, Altaf M, Swaminathan V, Siddappa NB, Ranga U et al. (2004). Curcumin, a novel p300/CREB-binding protein-specific inhibitor of acetyltransferase, represses the acetylation of histone/nonhistone proteins and histone acetyltransferase-dependent chromatin transcription. J Biol Chem 279: 51163–51171.

    Article  CAS  PubMed  Google Scholar 

  • Bird AW, Yu DY, Pray-Grant MG, Qiu Q, Harmon KE, Megee PC et al. (2002). Acetylation of histone H4 by Esa1 is required for DNA double-strand break repair. Nature 419: 411–415.

    Article  CAS  PubMed  Google Scholar 

  • Bonner WM, Redon CE, Dickey JS, Nakamura AJ, Sedelnikova OA, Solier S et al. (2008). GammaH2AX and cancer. Nat Rev Cancer 8: 957–967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burma S, Chen BP, Chen DJ . (2006). Role of non-homologous end joining (NHEJ) in maintaining genomic integrity. DNA Repair (Amst) 5: 1042–1048.

    Article  CAS  Google Scholar 

  • Chai B, Huang J, Cairns BR, Laurent BC . (2005). Distinct roles for the RSC and Swi/Snf ATP-dependent chromatin remodelers in DNA double-strand break repair. Genes Dev 19: 1656–1661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen HY, Lavu S, Bitterman KJ, Hekking B, Imahiyerobo TA, Miller C et al. (2004). Acetylation of the C terminus of Ku70 by CBP and PCAF controls Bax-mediated apoptosis. Mol Cell 13: 627–638.

    Article  CAS  PubMed  Google Scholar 

  • Das C, Lucia MS, Hansen KC, Tyler JK . (2009). CBP/p300-mediated acetylation of histone H3 on lysine 56. Nature 459: 113–117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Downs JA . (2007). Chromatin structure and DNA double-strand break responses in cancer progression and therapy. Oncogene 26: 7765–7772.

    Article  CAS  PubMed  Google Scholar 

  • Downs JA, Allard S, Jobin-Robitaille O, Javaheri A, Auger A, Bouchard N et al. (2004). Binding of chromatin-modifying activities to phosphorylated histone H2A at DNA damage sites. Mol Cell 16: 979–990.

    Article  CAS  PubMed  Google Scholar 

  • Helleday T, Petermann E, Lundin C, Hodgson B, Sharma RA . (2008). DNA repair pathways as targets for cancer therapy. Nat Rev Cancer 8: 193–204.

    Article  CAS  PubMed  Google Scholar 

  • Hong Z, Jiang J, Lan L, Nakajima S, Kanno S, Koseki H et al. (2008). A polycomb group protein, PHF1, is involved in the response to DNA double-strand breaks in human cell. Nucleic Acids Res 36: 2939–2947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horwitz GA, Zhang K, McBrian MA, Grunstein M, Kurdistani SK, Berk AJ . (2008). Adenovirus small e1a alters global patterns of histone modification. Science 321: 1084–1085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jasin M . (1996). Genetic manipulation of genomes with rare-cutting endonucleases. Trends Genet 12: 224–228.

    Article  CAS  PubMed  Google Scholar 

  • Javvadi P, Segan AT, Tuttle SW, Koumenis C . (2008). The chemopreventive agent curcumin is a potent radiosensitizer of human cervical tumor cells via increased reactive oxygen species production and overactivation of the mitogen-activated protein kinase pathway. Mol Pharmacol 73: 1491–1501.

    Article  CAS  PubMed  Google Scholar 

  • Johnson RD, Liu N, Jasin M . (1999). Mammalian XRCC2 promotes the repair of DNA double-strand breaks by homologous recombination. Nature 401: 397–399.

    CAS  PubMed  Google Scholar 

  • Karamouzis MV, Konstantinopoulos PA, Papavassiliou AG . (2007). Roles of CREB-binding protein (CBP)/p300 in respiratory epithelium tumorigenesis. Cell Res 17: 324–332.

    Article  CAS  PubMed  Google Scholar 

  • Khafif A, Hurst R, Kyker K, Fliss DM, Gil Z, Medina JE . (2005). Curcumin: a new radio-sensitizer of squamous cell carcinoma cells. Otolaryngol Head Neck Surg 132: 317–321.

    Article  PubMed  Google Scholar 

  • Kouzarides T . (2007). Chromatin modifications and their function. Cell 128: 693–705.

    Article  CAS  PubMed  Google Scholar 

  • Lan L, Nakajima S, Komatsu K, Nussenzweig A, Shimamoto A, Oshima J et al. (2005). Accumulation of Werner protein at DNA double-strand breaks in human cells. J Cell Sci 118: 4153–4162.

    Article  CAS  PubMed  Google Scholar 

  • Lee HS, Park JH, Kim SJ, Kwon SJ, Kwon J . (2010). A cooperative activation loop among SWI/SNF, gamma-H2AX and H3 acetylation for DNA double-strand break repair. Embo J 29: 1434–1445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lieber MR . (2008). The mechanism of human nonhomologous DNA end joining. J Biol Chem 283: 1–5.

    Article  CAS  PubMed  Google Scholar 

  • Mari PO, Florea BI, Persengiev SP, Verkaik NS, Bruggenwirth HT, Modesti M et al. (2006). Dynamic assembly of end-joining complexes requires interaction between Ku70/80 and XRCC4. Proc Natl Acad Sci USA 103: 18597–18602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medina PP, Romero OA, Kohno T, Montuenga LM, Pio R, Yokota J et al. (2008). Frequent BRG1/SMARCA4-inactivating mutations in human lung cancer cell lines. Hum Mutat 29: 617–622.

    Article  CAS  PubMed  Google Scholar 

  • Miller KM, Tjeertes JV, Coates J, Legube G, Polo SE, Britton S et al. (2010). Human HDAC1 and HDAC2 function in the DNA-damage response to promote DNA nonhomologous end-joining. Nat Struct Mol Biol 17: 1144–1151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murr R, Loizou JI, Yang YG, Cuenin C, Li H, Wang ZQ et al. (2006). Histone acetylation by Trrap-Tip60 modulates loading of repair proteins and repair of DNA double-strand breaks. Nat Cell Biol 8: 91–99.

    Article  CAS  PubMed  Google Scholar 

  • Nakajima S, Lan L, Kanno S, Usami N, Kobayashi K, Mori M et al. (2006). Replication-dependent and -independent responses of RAD18 to DNA damage in human cells. J Biol Chem 281: 34687–34695.

    Article  CAS  PubMed  Google Scholar 

  • Osley MA, Shen X . (2006). Altering nucleosomes during DNA double-strand break repair in yeast. Trends Genet 22: 671–677.

    Article  CAS  PubMed  Google Scholar 

  • Pandita TK, Richardson C . (2009). Chromatin remodeling finds its place in the DNA double-strand break response. Nucleic Acids Res 37: 1363–1377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park EJ, Chan DW, Park JH, Oettinger MA, Kwon J . (2003). DNA-PK is activated by nucleosomes and phosphorylates H2AX within the nucleosomes in an acetylation-dependent manner. Nucleic Acids Res 31: 6819–6827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park JH, Park EJ, Lee HS, Kim SJ, Hur SK, Imbalzano AN et al. (2006). Mammalian SWI/SNF complexes facilitate DNA double-strand break repair by promoting gamma-H2AX induction. EMBO J 25: 3986–3997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robert F, Hardy S, Nagy Z, Baldeyron C, Murr R, Dery U et al. (2006). The transcriptional histone acetyltransferase cofactor TRRAP associates with the MRN repair complex and plays a role in DNA double-strand break repair. Mol Cell Biol 26: 402–412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schiltz RL, Mizzen CA, Vassilev A, Cook RG, Allis CD, Nakatani Y . (1999). Overlapping but distinct patterns of histone acetylation by the human coactivators p300 and PCAF within nucleosomal substrates. J Biol Chem 274: 1189–1192.

    Article  CAS  PubMed  Google Scholar 

  • Shim EY, Ma JL, Oum JH, Yanez Y, Lee SE . (2005). The yeast chromatin remodeler RSC complex facilitates end joining repair of DNA double-strand breaks. Mol Cell Biol 25: 3934–3944.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Y, Jiang X, Chen S, Price BD . (2006). Inhibition of histone acetyltransferase activity by anacardic acid sensitizes tumor cells to ionizing radiation. FEBS Lett 580: 4353–4356.

    Article  CAS  PubMed  Google Scholar 

  • Tamburini BA, Tyler JK . (2005). Localized histone acetylation and deacetylation triggered by the homologous recombination pathway of double-strand DNA repair. Mol Cell Biol 25: 4903–4913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tjeertes JV, Miller KM, Jackson SP . (2009). Screen for DNA-damage-responsive histone modifications identifies H3K9Ac and H3K56Ac in human cells. Embo J 28: 1878–1889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valerie K, Povirk LF . (2003). Regulation and mechanisms of mammalian double-strand break repair. Oncogene 22: 5792–5812.

    Article  CAS  PubMed  Google Scholar 

  • van Attikum H, Fritsch O, Gasser SM . (2007). Distinct roles for SWR1 and INO80 chromatin remodeling complexes at chromosomal double-strand breaks. EMBO J 26: 4113–4125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Attikum H, Fritsch O, Hohn B, Gasser SM . (2004). Recruitment of the INO80 complex by H2A phosphorylation links ATP-dependent chromatin remodeling with DNA double-strand break repair. Cell 119: 777–788.

    Article  CAS  PubMed  Google Scholar 

  • Yoshida S, Satoh H, Mitsuya T, Tate G . (2001). Assignment of the human dickkopf (Xenopus) homolog 4 (DKK4) to chromosome 8p11.2-->p11.1 by fluorescence in situ hybridization. Cytogenet Cell Genet 94: 88–89.

    Article  CAS  PubMed  Google Scholar 

  • Yuan J, Pu M, Zhang Z, Lou Z . (2009). Histone H3-K56 acetylation is important for genomic stability in mammals. Cell Cycle 8: 1747–1753.

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Thomas HD, Batey MA, Cowell IG, Richardson CJ, Griffin RJ et al. (2006). Preclinical evaluation of a potent novel DNA-dependent protein kinase inhibitor NU7441. Cancer Res 66: 5354–5362.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Maria Jasin of the Memorial Sloan-Kettering Cancer Center, USA, for the pCBASce plasmid, Dr Marc Tini of the University of Western Ontario for the yellow fluorescent protein-Cbp plasmid and Dr Kazunori Aoki of the National Cancer Center Research Institute for the pAD-TK plasmid. This work was supported by Grants-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology of Japan for Scientific Research on Innovative Areas; from the Ministry of Health, Labor and Welfare of Japan for the 3rd-term Comprehensive 10-year Strategy for Cancer Control and for Cancer Research (19-9); and from the Program for Promotion of Fundamental Studies in Health Sciences of the National Institute of Biomedical Innovation (NiBio).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Kohno.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ogiwara, H., Ui, A., Otsuka, A. et al. Histone acetylation by CBP and p300 at double-strand break sites facilitates SWI/SNF chromatin remodeling and the recruitment of non-homologous end joining factors. Oncogene 30, 2135–2146 (2011). https://doi.org/10.1038/onc.2010.592

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.592

Keywords

This article is cited by

Search

Quick links