Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Oncogenic Ras/Src cooperativity in pancreatic neoplasia

Abstract

Pancreas cancer is one of the most lethal malignancies and is characterized by activating mutations of Kras, present in 95% of patients. More than 60% of pancreatic cancers also display increased c-Src activity, which is associated with poor prognosis. Although loss of tumor suppressor function (for example, p16, p53, Smad4) combined with oncogenic Kras signaling has been shown to accelerate pancreatic duct carcinogenesis, it is unclear whether elevated Src activity contributes to Kras-dependent tumorigenesis or is simply a biomarker of disease progression. Here, we demonstrate that in the context of oncogenic Kras, activation of c-Src through deletion of C-terminal Src kinase (CSK) results in the development of invasive pancreatic ductal adenocarcinoma (PDA) by 5–8 weeks. In contrast, deletion of CSK alone fails to induce neoplasia, while oncogenic Kras expression yields PDA at low frequency after a latency of 12 months. Analysis of cell lines derived from Ras/Src-induced PDA's indicates that oncogenic Ras/Src cooperativity may lead to genomic instability, yet Ras/Src-driven tumor cells remain dependent on Src signaling and as such, Src inhibition suppresses growth of Ras/Src-driven tumors. These findings demonstrate that oncogenic Ras/Src cooperate to accelerate PDA onset and support further studies of Src-directed therapies in pancreatic cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Aguirre AJ, Bardeesy N, Sinha M, Lopez L, Tuveson DA, Horner J et al. (2003). Activated Kras and Ink4a/Arf deficiency cooperate to produce metastatic pancreatic ductal adenocarcinoma. Genes Dev 17: 3112–3126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Almoguera C, Shibata D, Forrester K, Martin J, Arnheim N, Perucho M . (1988). Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes. Cell 53: 549–554.

    Article  CAS  PubMed  Google Scholar 

  • Bardeesy N, Cheng KH, Berger JH, Chu GC, Pahler J, Olson P et al. (2006). Smad4 is dispensable for normal pancreas development yet critical in progression and tumor biology of pancreas cancer. Genes Dev 20: 3130–3146.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barton CM, Hall PA, Hughes CM, Gullick WJ, Lemoine NR . (1991). Transforming growth factor alpha and epidermal growth factor in human pancreatic cancer. J Pathol 163: 111–116.

    Article  CAS  PubMed  Google Scholar 

  • Billadeau DD, Chatterjee S, Bramati P, Sreekumar R, Shah V, Hedin K et al. (2006). Characterization of the CXCR4 signaling in pancreatic cancer cells. Int J Gastrointest Cancer 37: 110–119.

    PubMed  Google Scholar 

  • Bromann PA, Korkaya H, Courtneidge SA . (2004). The interplay between Src family kinases and receptor tyrosine kinases. Oncogene 23: 7957–7968.

    Article  CAS  PubMed  Google Scholar 

  • Broome MA, Courtneidge SA . (2000). No requirement for src family kinases for PDGF signaling in fibroblasts expressing SV40 large T antigen. Oncogene 19: 2867–2869.

    Article  CAS  PubMed  Google Scholar 

  • Desgrosellier JS, Barnes LA, Shields DJ, Huang M, Lau SK, Prevost N et al. (2009). An integrin alpha(v)beta(3)-c-Src oncogenic unit promotes anchorage-independence and tumor progression. Nat Med 15: 1163–1169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eliceiri BP, Paul R, Schwartzberg PL, Hood JD, Leng J, Cheresh DA . (1999). Selective requirement for Src kinases during VEGF-induced angiogenesis and vascular permeability. Mol Cell 4: 915–924.

    Article  CAS  PubMed  Google Scholar 

  • Fanidi A, Harrington EA, Evan GI . (1992). Cooperative interaction between c-myc and bcl-2 proto-oncogenes. Nature 359: 554–556.

    Article  CAS  PubMed  Google Scholar 

  • Fenech M . (2000). The in vitro micronucleus technique. Mutat Res 455: 81–95.

    Article  CAS  PubMed  Google Scholar 

  • Grimm J, Potthast A, Wunder A, Moore A . (2003). Magnetic resonance imaging of the pancreas and pancreatic tumors in a mouse orthotopic model of human cancer. Int J Cancer 106: 806–811.

    Article  CAS  PubMed  Google Scholar 

  • Hall PA, Hughes CM, Staddon SL, Richman PI, Gullick WJ, Lemoine NR . (1990). The c-erb B-2 proto-oncogene in human pancreatic cancer. J Pathol 161: 195–200.

    Article  CAS  PubMed  Google Scholar 

  • Hernandez-Munoz I, Skoudy A, Real FX, Navarro P . (2008). Pancreatic ductal adenocarcinoma: cellular origin, signaling pathways and stroma contribution. Pancreatology 8: 462–469.

    Article  PubMed  Google Scholar 

  • Hezel AF, Kimmelman AC, Stanger BZ, Bardeesy N, Depinho RA . (2006). Genetics and biology of pancreatic ductal adenocarcinoma. Genes Dev 20: 1218–1249.

    Article  CAS  PubMed  Google Scholar 

  • Hingorani SR, Petricoin EF, Maitra A, Rajapakse V, King C, Jacobetz MA et al. (2003). Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell 4: 437–450.

    Article  CAS  PubMed  Google Scholar 

  • Hingorani SR, Wang L, Multani AS, Combs C, Deramaudt TB, Hruban RH et al. (2005). Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell 7: 469–483.

    Article  CAS  PubMed  Google Scholar 

  • Hruban RH, Takaori K, Klimstra DS, Adsay NV, Albores-Saavedra J, Biankin AV et al. (2004). An illustrated consensus on the classification of pancreatic intraepithelial neoplasia and intraductal papillary mucinous neoplasms. Am J Surg Pathol 28: 977–987.

    Article  PubMed  Google Scholar 

  • Hruban RH, Wilentz RE, Kern SE . (2000). Genetic progression in the pancreatic ducts. Am J Pathol 156: 1821–1825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hunter T, Sefton BM . (1980). Transforming gene product of Rous sarcoma virus phosphorylates tyrosine. Proc Natl Acad Sci USA 77: 1311–1315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ijichi H, Chytil A, Gorska AE, Aakre ME, Fujitani Y, Fujitani S et al. (2006). Aggressive pancreatic ductal adenocarcinoma in mice caused by pancreas-specific blockade of transforming growth factor-beta signaling in cooperation with active Kras expression. Genes Dev 20: 3147–3160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Irby RB, Yeatman TJ . (2000). Role of Src expression and activation in human cancer. Oncogene 19: 5636–5642.

    Article  CAS  PubMed  Google Scholar 

  • Ishizawar R, Parsons SJ . (2004). c-Src and cooperating partners in human cancer. Cancer Cell 6: 209–214.

    Article  CAS  PubMed  Google Scholar 

  • Izeradjene K, Combs C, Best M, Gopinathan A, Wagner A, Grady WM et al. (2007). Kras(G12D) and Smad4/Dpc4 haploinsufficiency cooperate to induce mucinous cystic neoplasms and invasive adenocarcinoma of the pancreas. Cancer Cell 11: 229–243.

    Article  CAS  PubMed  Google Scholar 

  • Jackson EL, Willis N, Mercer K, Bronson RT, Crowley D, Montoya R et al. (2001). Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. Genes Dev 15: 3243–3248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ . (2009). Cancer statistics, 2009. CA Cancer J Clin 59: 225–249.

    Article  PubMed  Google Scholar 

  • Kabil A, Silva E, Kortenkamp A . (2008). Estrogens and genomic instability in human breast cancer cells—involvement of Src/Raf/Erk signaling in micronucleus formation by estrogenic chemicals. Carcinogenesis 29: 1862–1868.

    Article  CAS  PubMed  Google Scholar 

  • Kasahara K, Nakayama Y, Nakazato Y, Ikeda K, Kuga T, Yamaguchi N . (2007). Src signaling regulates completion of abscission in cytokinesis through ERK/MAPK activation at the midbody. J Biol Chem 282: 5327–5339.

    Article  CAS  PubMed  Google Scholar 

  • Kline CL, Jackson R, Engelman R, Pledger WJ, Yeatman TJ, Irby RB . (2008). Src kinase induces tumor formation in the c-SRC C57BL/6 mouse. Int J Cancer 122: 2665–2673.

    Article  CAS  PubMed  Google Scholar 

  • Koreckij T, Nguyen H, Brown LG, Yu EY, Vessella RL, Corey E . (2009). Dasatinib inhibits the growth of prostate cancer in bone and provides additional protection from osteolysis. Br J Cancer 101: 263–268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lombardo LJ, Lee FY, Chen P, Norris D, Barrish JC, Behnia K et al. (2004). Discovery of N-(2-chloro-6-methyl- phenyl)-2-(6-(4-(2-hydroxyethyl)- piperazin-1-yl)-2-methylpyrimidin-4- ylamino)thiazole-5-carboxamide (BMS-354825), a dual Src/Abl kinase inhibitor with potent antitumor activity in preclinical assays. J Med Chem 47: 6658–6661.

    Article  CAS  PubMed  Google Scholar 

  • Lutz MP, Esser IB, Flossmann-Kast BB, Vogelmann R, Luhrs H, Friess H et al. (1998). Overexpression and activation of the tyrosine kinase src in human pancreatic carcinoma. Biochem Biophys Res Commun 243: 503–508.

    Article  CAS  PubMed  Google Scholar 

  • Maddalena AS, Hainfellner JA, Hegi ME, Glatzel M, Aguzzi A . (1999). No complementation between TP53 or RB-1 and v-src in astrocytomas of GFAP-v-src transgenic mice. Brain Pathol 9: 627–637.

    Article  CAS  PubMed  Google Scholar 

  • Martin GS . (2001). The hunting of the src. Nat Rev Mol Cell Biol 2: 467–475.

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto T, Kiguchi K, Jiang J, Carbajal S, Ruffino L, Beltran L et al. (2004). Development of transgenic mice that inducibly express an active form of c-src in the epidermis. Mol Carcinog 40: 189–200.

    Article  CAS  PubMed  Google Scholar 

  • Morton JP, Karim SA, Graham K, Timpson P, Jamieson N, Athineos D et al. (2010). Dasatinib inhibits the development of metastases in a mouse model of pancreatic ductal adenocarcinoma. Gastroenterology 139: 292–303.

    Article  CAS  PubMed  Google Scholar 

  • Murphy EA, Majeti BK, Barnes LA, Makale M, Weis SM, Lutu-Fuga K et al. (2008). Nanoparticle-mediated drug delivery to tumor vasculature suppresses metastasis. Proc Natl Acad Sci USA 105: 9343–9348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Podsypanina K, Politi K, Beverly LJ, Varmus HE . (2008). Oncogene cooperation in tumor maintenance and tumor recurrence in mouse mammary tumors induced by Myc and mutant Kras. Proc Natl Acad Sci USA 105: 5242–5247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ricono JM, Huang M, Barnes LA, Lau SK, Weis SM, Schlaepfer DD et al. (2009). Specific cross-talk between epidermal growth factor receptor and integrin alphavbeta5 promotes carcinoma cell invasion and metastasis. Cancer Res 69: 1383–1391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rous P . (1911). A sarcoma of the fowl transmissable by an agent separable from the tumor cells. J Exp Med 13: 397–411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rucci N, Recchia I, Angelucci A, Alamanou M, Del Fattore A, Fortunati D et al. (2006). Inhibition of protein kinase c-Src reduces the incidence of breast cancer metastases and increases survival in mice: implications for therapy. J Pharmacol Exp Ther 318: 161–172.

    Article  CAS  PubMed  Google Scholar 

  • Schmedt C, Saijo K, Niidome T, Kuhn R, Aizawa S, Tarakhovsky A . (1998). Csk controls antigen receptor-mediated development and selection of T-lineage cells. Nature 394: 901–904.

    Article  CAS  PubMed  Google Scholar 

  • Stehelin D, Varmus HE, Bishop JM, Vogt PK . (1976). DNA related to the transforming gene(s) of avian sarcoma viruses is present in normal avian DNA. Nature 260: 170–173.

    Article  CAS  PubMed  Google Scholar 

  • Talamonti MS, Roh MS, Curley SA, Gallick GE . (1993). Increase in activity and level of pp60c-src in progressive stages of human colorectal cancer. J Clin Invest 91: 53–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas RM, Kim J, Revelo-Penafiel MP, Angel R, Dawson DW, Lowy AM . (2008). The chemokine receptor CXCR4 is expressed in pancreatic intraepithelial neoplasia. Gut 57: 1555–1560.

    Article  CAS  PubMed  Google Scholar 

  • Thomas RM, Toney K, Fenoglio-Preiser C, Revelo-Penafiel MP, Hingorani SR, Tuveson DA et al. (2007). The RON receptor tyrosine kinase mediates oncogenic phenotypes in pancreatic cancer cells and is increasingly expressed during pancreatic cancer progression. Cancer Res 67: 6075–6082.

    Article  CAS  PubMed  Google Scholar 

  • Trevino JG, Summy JM, Lesslie DP, Parikh NU, Hong DS, Lee FY et al. (2006). Inhibition of SRC expression and activity inhibits tumor progression and metastasis of human pancreatic adenocarcinoma cells in an orthotopic nude mouse model. Am J Pathol 168: 962–972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vidal M, Larson DE, Cagan RL . (2006). Csk-deficient boundary cells are eliminated from normal Drosophila epithelia by exclusion, migration, and apoptosis. Dev Cell 10: 33–44.

    Article  CAS  PubMed  Google Scholar 

  • Vitali R, Mancini C, Cesi V, Tanno B, Piscitelli M, Mancuso M et al. (2009). Activity of tyrosine kinase inhibitor Dasatinib in neuroblastoma cells in vitro and in orthotopic mouse model. Int J Cancer 125: 2547–2555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warshaw AL, Fernandez-del Castillo C . (1992). Pancreatic carcinoma. N Engl J Med 326: 455–465.

    Article  CAS  PubMed  Google Scholar 

  • Yezhelyev MV, Koehl G, Guba M, Brabletz T, Jauch KW, Ryan A et al. (2004). Inhibition of SRC tyrosine kinase as treatment for human pancreatic cancer growing orthotopically in nude mice. Clin Cancer Res 10: 8028–8036.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Charles Yi and Dana Wu for excellent technical assistance. We acknowledge Richard Aspinall, Lisette Acevedo, Josh Greenberg and David Tuveson for valuable discussions, Greg Boivin for histological analysis, as well as Richard Levenson and Kristin Lane for NuBrio imaging. This work was supported by NIH grants R21CA104898, P01-CA078045 (DAC) and Collaborative Translational Research grants from Moores UCSD Cancer Center (DAC, DJS and AML).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D A Cheresh.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shields, D., Murphy, E., Desgrosellier, J. et al. Oncogenic Ras/Src cooperativity in pancreatic neoplasia. Oncogene 30, 2123–2134 (2011). https://doi.org/10.1038/onc.2010.589

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.589

Keywords

This article is cited by

Search

Quick links