Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Radiation-induced intercellular signaling mediated by cytochrome-c via a p53-dependent pathway in hepatoma cells

Abstract

The tumor suppressor p53 has a crucial role in cellular response to DNA damage caused by ionizing radiation, but it is still unclear whether p53 can modulate radiation-induced bystander effects (RIBE). In the present work, three different hepatoma cell lines, namely HepG2 (wild p53), PLC/PRF/5 (mutation p53) and Hep3B (p53 null), were irradiated with γ-rays and then co-cultured with normal Chang liver cell (wild p53) in order to elucidate the mechanisms of RIBE. Results showed that the radiosensitivity of HepG2 cells was higher than that of PLC/PRF/5 and Hep3B cells. Only irradiated HepG2 cells, rather than irradiated PLC/PRF/5 or Hep3B cells, could induce bystander effect of micronuclei (MN) formation in the neighboring Chang liver cells. When HepG2 cells were treated with 20 μM pifithrin-α, an inhibitor of p53 function, or 5 μM cyclosporin A (CsA), an inhibitor of cytochrome-c release from mitochondria, the MN induction in bystander Chang liver cells was diminished. In fact, it was found that after irradiation, cytochrome-c was released from mitochondria into the cytoplasm only in HepG2 cells in a p53-dependent manner, but not in PLC/PRF/5 and Hep3B cells. Interestingly, when 50 μg/ml exogenous cytochrome-c was added into cell co-culture medium, RIBE was significantly triggered by irradiated PLC/PRF/5 and Hep3B cells, which previously failed to provoke a bystander effect. In addition, this exogenous cytochrome-c also partly recovered the RIBE induced by irradiated HepG2 cells even with CsA treatment. Our results provide new evidence that the RIBE can be modulated by the p53 status of irradiated hepatoma cells and that a p53-dependent release of cytochrome-c may be involved in the RIBE.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Ain JF, Gouillat C, Bertrand S, Fourel I, Guillaud M, Saguier G et al. (1994). Human hepatocellular carcinoma transplanted in nude mice: a relevant experimental model to assess tumoral destruction by alcoholization. J Surg Res 57: 366–372.

    Article  CAS  PubMed  Google Scholar 

  • Atlante A, Calissano P, Bobba A, Azzariti A, Marra E, Passarella S . (2000). Cytochrome c is released from mitochondria in a reactive oxygen species (ROS)-dependent fashion and can operate as a ROS scavenger and as a respiratory substrate in cerebellar neurons undergoing excitotoxic death. J Biol Chem 275: 37159–37166.

    Article  CAS  PubMed  Google Scholar 

  • Azzam EI, de Toledo SM, Little JB . (2003a). Expression of CONNEXIN43 is highly sensitive to ionizing radiation and other environmental stresses. Cancer Res 63: 7128–7135.

    CAS  PubMed  Google Scholar 

  • Azzam EI, de Toledo SM, Little B . (2003b). Oxidative metabolism, gap junctions and the ionizing radiation-induced bystander effect. Oncogene 22: 7050–7057.

    Article  CAS  PubMed  Google Scholar 

  • Bartek J, Bartkova J, Vojtesek B, Staskova Z, Lukas J, Rejthar A et al. (1991). Aberrant expression of the p53 oncoprotein is a common feature of a wide spectrum of human malignancies. Oncogene 6: 1699–1703.

    CAS  PubMed  Google Scholar 

  • Bressac B, Galvin KM, Liang TJ, Isselbacher KJ, Wands JR, Ozturk M . (1990). Abnormal structure and expression of p53 gene in human hepatocellular carcinoma. Proc Natl Acad Sci USA 87: 1973–1977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen HH, Jia RF, Yu L, Zhao MJ, Shao CL, Cheng WY . (2008a). Bystander effects induced by continuous low-dose-rate 125I seeds potentiate the killing action of irradiation on human lung cancer cells in vitro. Int J Radiat Oncol Biol Phys 72: 1560–1566.

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Zhao Y, Han W, Zhao G, Zhu L, Wang J et al. (2008b). Mitochondria-dependent signalling pathway are involved in the early process of radiation-induced bystander effects. Br J Cancer 98: 1839–1844.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chhipa RR, Bhat MK . (2007). Bystander killing of breast cancer MCF-7 cells by MDA-MB-231 cells exposed to 5-fluorouracil is mediated via Fas. J Cell Biochem 101: 68–79.

    Article  CAS  PubMed  Google Scholar 

  • Coates P, Robinson J, Lorimore S, Wright E . (2008). Ongoing activation of p53 pathway responses is a long-term consequence of radiation exposure in vivo and associates with altered macrophage activities. J Pathol 214: 610–616.

    Article  CAS  PubMed  Google Scholar 

  • Concin N, Zeillinger C, Stimpfel M, Schiebel I, Tong D, Wolff U et al. (2000). p53-dependent radioresistance in ovarian carcinoma cell lines. Cancer Lett 150: 191–199.

    Article  CAS  PubMed  Google Scholar 

  • Emerit I, Garban F, Vassy J, Levy A, Filipe P, Freitas J . (1996). Superoxide-mediated clastogenesis and anticlastogenic effects of exogenous superoxide dismutase. Proc Natl Acad Sci USA 93: 12799–12804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han W, Wu L, Chen S, Yu KN . (2009). Exogenous carbon monoxide protects the bystander Chinese hamster ovary cells in mixed co-culture system after alpha-particle irradiation. Carcinogenesis 31: 275–280.

    Article  PubMed  Google Scholar 

  • Harada K, Nonaka T, Hamada N, Sakurai H, Hasegawa M, Funayama T et al. (2009). Heavy-ion-induced bystander killing of human lung cancer cells: role of gap junctional intercellular communication. Cancer Sci 100: 684–688.

    Article  CAS  PubMed  Google Scholar 

  • Iyer R, Lehnert BE, Svensson R . (2000). Factors underlying the cell growth-related bystander responses to alpha particles. Cancer Res 60: 1290–1298.

    CAS  PubMed  Google Scholar 

  • Komarov PG, Komarova EA, Kondratov RV, Christov-Tselkov K, Coon JS, Chernov MV et al. (1999). A chemical inhibitor of p53 that protects mice from the side effects of cancer therapy. Science 285: 1733–1737.

    Article  CAS  PubMed  Google Scholar 

  • Komarova EA, Diatchenko L, Rokhlin OW, Hill JE, Wang ZJ, Krivokrysenko VI et al. (1998). Stress-induced secretion of growth inhibitors: a novel tumor suppressor function of p53. Oncogene 17: 1089–1096.

    Article  CAS  PubMed  Google Scholar 

  • Komarova EA, Neznanov N, Komarov PG, Chernov MV, Wang K, Gudkov AV . (2003). p53 inhibitor pifithrin alpha can suppress heat shock and glucocorticoid signaling pathways. J Biol Chem 278: 15465–15468.

    Article  CAS  PubMed  Google Scholar 

  • Lehnert BE, Goodwin EH . (1997). A new mechanism for DNA alterations induced by alpha particles such as those emitted by radon and radon progeny. Environ Health Perspect 105 (Suppl 5): 1095–1101.

    Article  PubMed  PubMed Central  Google Scholar 

  • Luce A, Courtin A, Levalois C, Altmeyer-Morel S, Romeo PH, Chevillard S et al. (2009). Death receptor pathways mediate targeted and non-targeted effects of ionizing radiations in breast cancer cells. Carcinogenesis 30: 432–439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma S, Jiao B, Liu X, Yi H, Kong D, Gao L et al. (2009). Approach to radiation therapy in hepatocellular carcinoma. Cancer Treat Rev 36: 157–163.

    Article  PubMed  Google Scholar 

  • Mancuso M, Pasquali E, Leonardi S, Tanori M, Rebessi S, Di Majo V et al. (2008). Oncogenic bystander radiation effects in patched heterozygous mouse cerebellum. Proc Natl Acad Sci USA 105: 12445–12450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsumoto H, Hayashi S, Hatashita M, Ohnishi K, Shioura H, Ohtsubo T et al. (2001). Induction of radioresistance by a nitric oxide-mediated bystander effect. Radiat Res 155: 387–396.

    Article  CAS  PubMed  Google Scholar 

  • Mitchell SA, Marino SA, Brenner DJ, Hall EJ . (2004). Bystander effect and adaptive response in C3H 10T(1/2) cells. Int J Radiat Biol 80: 465–472.

    Article  CAS  PubMed  Google Scholar 

  • Morgan WF, Hartmann A, Limoli CL, Nagar S, Ponnaiya B . (2002). Bystander effects in radiation-induced genomic instability. Mutat Res 504: 91–100.

    Article  CAS  PubMed  Google Scholar 

  • Morgan WF, Sowa MB . (2007). Non-targeted bystander effects induced by ionizing radiation. Mutat Res 616: 159–164.

    Article  CAS  PubMed  Google Scholar 

  • Moses AC, Freinkel AJ, Knowles BB, Aden DP . (1983). Demonstration that a human hepatoma cell line produces a specific insulin-like growth factor carrier protein. J Clin Endocrinol Metab 56: 1003–1008.

    Article  CAS  PubMed  Google Scholar 

  • Mothersill C, Seymour C . (1997). Medium from irradiated human epithelial cells but not human fibroblasts reduces the clonogenic survival of unirradiated cells. Int J Radiat Biol 71: 421–427.

    Article  CAS  PubMed  Google Scholar 

  • Murphy JE, Nugent S, Seymour C, Mothersill C . (2005). Mitochondrial DNA point mutations and a novel deletion induced by direct low-LET radiation and by medium from irradiated cells. Mutat Res 585: 127–136.

    Article  CAS  PubMed  Google Scholar 

  • Nagasawa H, Little JB . (1992). Induction of sister chromatid exchanges by extremely low doses of alpha-particles. Cancer Res 52: 6394–6396.

    CAS  PubMed  Google Scholar 

  • Nagasawa H, Little JB . (1999). Unexpected sensitivity to the induction of mutations by very low doses of alpha-particle radiation: evidence for a bystander effect. Radiat Res 152: 552–557.

    Article  CAS  PubMed  Google Scholar 

  • Narayanan PK, Goodwin EH, Lehnert BE . (1997). Alpha particles initiate biological production of superoxide anions and hydrogen peroxide in human cells. Cancer Res 57: 3963–3971.

    CAS  PubMed  Google Scholar 

  • Narayanan PK, LaRue KE, Goodwin EH, Lehnert BE . (1999). Alpha particles induce the production of interleukin-8 by human cells. Radiat Res 152: 57–63.

    Article  CAS  PubMed  Google Scholar 

  • Ng LT, Chiang LC, Lin YT, Lin CC . (2006). Antiproliferative and apoptotic effects of tetrandrine on different human hepatoma cell lines. Am J Chin Med 34: 125–135.

    Article  CAS  PubMed  Google Scholar 

  • Peixoto PM, Ryu SY, Pruzansky DP, Kuriakose M, Gilmore A, Kinnally KW . (2009). Mitochondrial apoptosis is amplified through gap junctions. Biochem Biophys Res Commun 390: 38–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Preta G, de Klark R, Glas R . (2009). A role for nuclear translocation of tripeptidyl-peptidase II in reactive oxygen species-dependent DNA damage responses. Biochem Biophys Res Commun 389: 575–579.

    Article  CAS  PubMed  Google Scholar 

  • Puisieux A, Galvin K, Troalen F, Bressac B, Marcais C, Galun E et al. (1993). Retinoblastoma and p53 tumor suppressor genes in human hepatoma cell lines. Faseb J 7: 1407–1413.

    Article  CAS  PubMed  Google Scholar 

  • Ryan LA, Smith RW, Seymour CB, Mothersill CE . (2008). Dilution of irradiated cell conditioned medium and the bystander effect. Radiat Res 169: 188–196.

    Article  CAS  PubMed  Google Scholar 

  • Schuler M, Bossy-Wetzel E, Goldstein JC, Fitzgerald P, Green DR . (2000). p53 induces apoptosis by caspase activation through mitochondrial cytochrome c release. J Biol Chem 275: 7337–7342.

    Article  CAS  PubMed  Google Scholar 

  • Seymour CB, Mothersill C . (1997). Delayed expression of lethal mutations and genomic instability in the progeny of human epithelial cells that survived in a bystander-killing environment. Radiat Oncol Investig 5: 106–110.

    Article  CAS  PubMed  Google Scholar 

  • Shao C, Aoki M, Furusawa Y . (2003a). Bystander effect on cell growth stimulation in neoplastic HSGc cells induced by heavy-ion irradiation. Radiat Environ Biophys 42: 183–187.

    Article  CAS  PubMed  Google Scholar 

  • Shao C, Folkard M, Michael BD, Prise KM . (2004). Targeted cytoplasmic irradiation induces bystander responses. Proc Natl Acad Sci USA 101: 13495–13500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shao C, Folkard M, Michael BD, Prise KM . (2005). Bystander signaling between glioma cells and fibroblasts targeted with counted particles. Int J Cancer 116: 45–51.

    Article  CAS  PubMed  Google Scholar 

  • Shao C, Folkard M, Prise KM . (2008a). Role of TGF-beta1 and nitric oxide in the bystander response of irradiated glioma cells. Oncogene 27: 434–440.

    Article  CAS  PubMed  Google Scholar 

  • Shao C, Furusawa Y, Aoki M, Ando K . (2003b). Role of gap junctional intercellular communication in radiation-induced bystander effects in human fibroblasts. Radiat Res 160: 318–323.

    Article  CAS  PubMed  Google Scholar 

  • Shao C, Furusawa Y, Kobayashi Y, Funayama T, Wada S . (2003c). Bystander effect induced by counted high-LET particles in confluent human fibroblasts: a mechanistic study. Faseb J 17: 1422–1427.

    Article  CAS  PubMed  Google Scholar 

  • Shao C, Prise KM, Folkard M . (2008b). Signaling factors for irradiated glioma cells induced bystander responses in fibroblasts. Mutat Res 638: 139–145.

    Article  CAS  PubMed  Google Scholar 

  • Shao CL, Zhang JH, Prise KM . (2010). Differential modulation of a radiation-induced bystander effect in glioblastoma cells by pifithrin-alpha and wortmannin. Nucl Instrum Methods Phys Res B 268: 627–631.

    Article  CAS  Google Scholar 

  • Shareef MM, Cui N, Burikhanov R, Gupta S, Satishkumar S, Shajahan S et al. (2007). Role of tumor necrosis factor-alpha and TRAIL in high-dose radiation-induced bystander signaling in lung adenocarcinoma. Cancer Res 67: 11811–11820.

    Article  CAS  PubMed  Google Scholar 

  • Tartier L, Gilchrist S, Burdak-Rothkamm S, Folkard M, Prise KM . (2007). Cytoplasmic irradiation induces mitochondrial-dependent 53BP1 protein relocalization in irradiated and bystander cells. Cancer Res 67: 5872–5879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai KK, Stuart J, Chuang YY, Little JB, Yuan ZM . (2009). Low-dose radiation-induced senescent stromal fibroblasts render nearby breast cancer cells radioresistant. Radiat Res 172: 306–313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viani P, Giussani P, Brioschi L, Bassi R, Anelli V, Tettamanti G et al. (2003). Ceramide in nitric oxide inhibition of glioma cell growth. Evidence for the involvement of ceramide traffic. J Biol Chem 278: 9592–9601.

    Article  CAS  PubMed  Google Scholar 

  • Vousden KH, Lane DP . (2007). p53 in health and disease. Nat Rev Mol Cell Biol 8: 275–283.

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Ohyama H, Haginoya K, Odaka T, Itsukaichi H, Yukawa O et al. (2000). Adaptive response in embryogenesis. III. Relationship to radiation-induced apoptosis and Trp53 gene status. Radiat Res 154: 277–282.

    Article  CAS  PubMed  Google Scholar 

  • Yang G, Wu L, Chen S, Zhu L, Huang P, Tong L et al. (2009). Mitochondrial dysfunction resulting from loss of cytochrome c impairs radiation-induced bystander effect. Br J Cancer 100: 1912–1916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • You KR, Wen J, Lee ST, Kim DG . (2002). Cytochrome c oxidase subunit III: a molecular marker for N-(4-hydroxyphenyl)retinamise-induced oxidative stress in hepatoma cells. J Biol Chem 277: 3870–3877.

    Article  CAS  PubMed  Google Scholar 

  • Yuan D, Pan Y, Zhang J, Shao C . (2010). Role of nuclear factor-kappaB and P53 in radioadaptive response in Chang live cells. Mutat Res 688: 66–71.

    Article  CAS  PubMed  Google Scholar 

  • Zhang XP, Liu F, Cheng Z, Wang W . (2009). Cell fate decision mediated by p53 pulses. Proc Natl Acad Sci USA 106: 12245–12250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Zhou J, Held KD, Redmond RW, Prise KM, Liber HL . (2008). Deficiencies of double-strand break repair factors and effects on mutagenesis in directly gamma-irradiated and medium-mediated bystander human lymphoblastoid cells. Radiat Res 169: 197–206.

    Article  CAS  PubMed  Google Scholar 

  • Zhou H, Ivanov VN, Gillespie J, Geard CR, Amundson SA, Brenner DJ et al. (2005). Mechanism of radiation-induced bystander effect: role of the cyclooxygenase-2 signaling pathway. Proc Natl Acad Sci USA 102: 14641–14646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou H, Ivanov VN, Lien YC, Davidson M, Hei TK . (2008). Mitochondrial function and nuclear factor-kappaB-mediated signaling in radiation-induced bystander effects. Cancer Res 68: 2233–2240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the National Nature Science Foundation of China Grant numbers 30770644 and 31070758, the Shanghai Health Bureau (08GWD09, 08GWZX0602) for funding this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Shao.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, M., Zhao, M., Shen, B. et al. Radiation-induced intercellular signaling mediated by cytochrome-c via a p53-dependent pathway in hepatoma cells. Oncogene 30, 1947–1955 (2011). https://doi.org/10.1038/onc.2010.567

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.567

Keywords

This article is cited by

Search

Quick links