Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

GNL3L depletion destabilizes MDM2 and induces p53-dependent G2/M arrest

Abstract

Guanine nucleotide binding protein-like 3-like (GNL3L) is a nucleolar protein and the vertebrate paralogue of nucleostemin (NS). We previously reported that nucleoplasmic mobilization of NS stabilizes MDM2 (mouse double minute 2). Here, we investigated the role of GNL3L as a novel MDM2 regulator. We found that GNL3L binds MDM2 in vivo and displays the same function as NS in stabilizing MDM2 protein and preventing its ubiquitylation. The interaction between GNL3L and MDM2 also takes place in the nucleoplasm. However, the MDM2 regulatory activity of GNL3L occurs constitutively and does not so much depend on the nucleolar release mechanism as NS does. GNL3L depletion triggers G2/M arrest in the p53-wild-type HCT116 cells more than in the p53-null cells, and upregulates specific p53 targets (that is, Bax, 14-3-3σ and p21) without affecting the ubiquitylation or stability of p53 proteins. The inhibitory activity of GNL3L on p53-mediated transcription correlates with the increased expression of GNL3L and reduced expression of 14-3-3σ and p21 in human gastrointestinal tumors. This work shows that in contrast to most nucleolar proteins that negatively control MDM2, GNL3L and NS are the only two that are designed to stabilize MDM2 protein under basal or induced condition, respectively, and may act as tumor-promoting genes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Baddoo M, Hill K, Wilkinson R, Gaupp D, Hughes C, Kopen GC et al. (2003). Characterization of mesenchymal stem cells isolated from murine bone marrow by negative selection. J Cell Biochem 89: 1235–1249.

    Article  CAS  PubMed  Google Scholar 

  • Beekman C, Nichane M, De Clercq S, Maetens M, Floss T, Wurst W et al. (2006). Evolutionarily conserved role of nucleostemin: controlling proliferation of stem/progenitor cells during early vertebrate development. Mol Cell Biol 26: 9291–9301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bunz F, Dutriaux A, Lengauer C, Waldman T, Zhou S, Brown JP et al. (1998). Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 282: 1497–1501.

    Article  CAS  PubMed  Google Scholar 

  • Dai MS, Sun XX, Lu H . (2008). Aberrant expression of nucleostemin activates p53 and induces cell cycle arrest via inhibition of MDM2. Mol Cell Biol 28: 4365–4376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai MS, Zeng SX, Jin Y, Sun XX, David L, Lu H . (2004). Ribosomal protein L23 activates p53 by inhibiting MDM2 function in response to ribosomal perturbation but not to translation inhibition. Mol Cell Biol 24: 7654–7668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang S, Jensen JP, Ludwig RL, Vousden KH, Weissman AM . (2000). Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53. J Biol Chem 275: 8945–8951.

    Article  CAS  PubMed  Google Scholar 

  • Fu D, Collins K . (2007). Purification of human telomerase complexes identifies factors involved in telomerase biogenesis and telomere length regulation. Mol Cell 28: 773–785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hermeking H, Lengauer C, Polyak K, He TC, Zhang L, Thiagalingam S et al. (1997). 14-3-3 sigma is a p53-regulated inhibitor of G2/M progression. Mol Cell 1: 3–11.

    Article  CAS  PubMed  Google Scholar 

  • Huang M, Itahana K, Zhang Y, Mitchell BS . (2009). Depletion of guanine nucleotides leads to the Mdm2-dependent proteasomal degradation of nucleostemin. Cancer Res 69: 3004–3012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin A, Itahana K, O'Keefe K, Zhang Y . (2004). Inhibition of HDM2 and activation of p53 by ribosomal protein L23. Mol Cell Biol 24: 7669–7680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kubbutat MH, Ludwig RL, Levine AJ, Vousden KH . (1999). Analysis of the degradation function of Mdm2. Cell Growth Differ 10: 87–92.

    CAS  PubMed  Google Scholar 

  • Kurki S, Peltonen K, Latonen L, Kiviharju TM, Ojala PM, Meek D et al. (2004). Nucleolar protein NPM interacts with HDM2 and protects tumor suppressor protein p53 from HDM2-mediated degradation. Cancer Cell 5: 465–475.

    Article  CAS  PubMed  Google Scholar 

  • Ma H, Pederson T . (2007). Depletion of the nucleolar protein nucleostemin causes G1 cell cycle arrest via the p53 pathway. Mol Biol Cell 18: 2630–2635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maki N, Takechi K, Sano S, Tarui H, Sasai Y, Agata K . (2007). Rapid accumulation of nucleostemin in nucleolus during newt regeneration. Dev Dyn 236: 941–950.

    Article  CAS  PubMed  Google Scholar 

  • Meng L, Lin T, Tsai RY . (2008). Nucleoplasmic mobilization of nucleostemin stabilizes MDM2 and promotes G2-M progression and cell survival. J Cell Sci 121: 4037–4046.

    Article  CAS  PubMed  Google Scholar 

  • Meng L, Yasumoto H, Tsai RY . (2006). Multiple controls regulate nucleostemin partitioning between nucleolus and nucleoplasm. J Cell Sci 119: 5124–5136.

    Article  CAS  PubMed  Google Scholar 

  • Meng L, Zhu Q, Tsai RY . (2007). Nucleolar trafficking of nucleostemin family proteins: common versus protein-specific mechanisms. Mol Cell Biol 27: 8670–8682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nikpour P, Mowla SJ, Jafarnejad SM, Fischer U, Schulz WA . (2009). Differential effects of nucleostemin suppression on cell cycle arrest and apoptosis in the bladder cancer cell lines 5637 and SW1710. Cell Prolif 42: 762–769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohmura M, Naka K, Hoshii T, Muraguchi T, Shugo H, Tamase A et al. (2008). Identification of stem cells during prepubertal spermatogenesis via monitoring of nucleostemin promoter activity. Stem Cells 26: 3237–3246.

    Article  CAS  PubMed  Google Scholar 

  • Pederson T, Tsai RY . (2009). In search of nonribosomal nucleolar protein function and regulation. J Cell Biol 184: 771–776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siddiqi S, Gude N, Hosoda T, Muraski J, Rubio M, Emmanuel G et al. (2008). Myocardial induction of nucleostemin in response to postnatal growth and pathological challenge. Circ Res 103: 89–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tao W, Levine AJ . (1999). P19(ARF) stabilizes p53 by blocking nucleo-cytoplasmic shuttling of Mdm2. Proc Natl Acad Sci USA 96: 6937–6941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor WR, Stark GR . (2001). Regulation of the G2/M transition by p53. Oncogene 20: 1803–1815.

    Article  CAS  PubMed  Google Scholar 

  • Tsai RY, McKay RD . (2002). A nucleolar mechanism controlling cell proliferation in stem cells and cancer cells. Genes Dev 16: 2991–3003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai RY, Meng L . (2009). Nucleostemin: a latecomer with new tricks. Int J Biochem Cell Biol 41: 2122–2124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wallace M, Worrall E, Pettersson S, Hupp TR, Ball KL . (2006). Dual-site regulation of MDM2 E3-ubiquitin ligase activity. Mol Cell 23: 251–263.

    Article  CAS  PubMed  Google Scholar 

  • Yasumoto H, Meng L, Lin T, Zhu Q, Tsai RY . (2007). GNL3L inhibits activity of estrogen-related receptor gamma by competing for coactivator binding. J Cell Sci 120: 2532–2543.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Wolf GW, Bhat K, Jin A, Allio T, Burkhart WA et al. (2003). Ribosomal protein L11 negatively regulates oncoprotein MDM2 and mediates a p53-dependent ribosomal-stress checkpoint pathway. Mol Cell Biol 23: 8902–8912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Q, Meng L, Hsu JK, Lin T, Teishima J, Tsai RY . (2009). GNL3L stabilizes the TRF1 complex and promotes mitotic transition. J Cell Biol 185: 827–839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Q, Yasumoto H, Tsai RY . (2006). Nucleostemin delays cellular senescence and negatively regulates TRF1 protein stability. Mol Cell Biol 26: 9279–9290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Bert Vogelstein of the Johns Hopkins Oncology Center for providing the HCT116 cells. This work is supported by NCI-PHS grant R01 CA113750 to RY Tsai.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Y L Tsai.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meng, L., Hsu, J. & Tsai, R. GNL3L depletion destabilizes MDM2 and induces p53-dependent G2/M arrest. Oncogene 30, 1716–1726 (2011). https://doi.org/10.1038/onc.2010.550

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.550

Keywords

This article is cited by

Search

Quick links