Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A Variant in a MicroRNA complementary site in the 3′ UTR of the KIT oncogene increases risk of acral melanoma

Abstract

MicroRNAs (miRNAs) are small 22nt single stranded RNAs that negatively regulate protein expression by binding to partially complementary sequences in the 3′ untranslated region (3′ UTRs) of target gene messenger RNAs (mRNA). Recently, mutations have been identified in both miRNAs and target genes that disrupt regulatory relationships, contribute to oncogenesis and serve as biomarkers for cancer risk. KIT, an established oncogene with a multifaceted role in melanogenesis and melanoma pathogenesis, has recently been shown to be upregulated in some melanomas, and is also a target of the miRNA miR-221. Here, we describe a genetic variant in the 3′ UTR of the KIT oncogene that correlates with a greater than fourfold increased risk of acral melanoma. This KIT variant results in a mismatch in the seed region of a miR-221 complementary site and reporter data suggests that this mismatch can result in increased expression of the KIT oncogene. Consistent with the hypothesis that this is a functional variant, KIT mRNA and protein levels are both increased in the majority of samples harboring the KIT variant. This work identifies a novel genetic marker for increased heritable risk of melanoma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Alexeev V, Yoon K . (2006). Distinctive role of the cKit receptor tyrosine kinase signaling in mammalian melanocytes. J Invest Dermatol 126: 1102–1110.

    Article  CAS  PubMed  Google Scholar 

  • Anderson MA, Gusella JF . (1984). Use of cyclosporin A in establishing Epstein-Barr virus-transformed human lymphoblastoid cell lines. In vitro 20: 856–858.

    Article  CAS  PubMed  Google Scholar 

  • Ashida A, Takata M, Murata H, Kido K, Saida T . (2009). Pathological activation of KIT in metastatic tumors of acral and mucosal melanomas. Int J Cancer 124: 862–868.

    Article  CAS  PubMed  Google Scholar 

  • Chin LJ, Ratner E, Leng S, Zhai R, Nallur S, Babar I et al. (2008). A SNP in a let-7 microRNA complementary site in the KRAS 3′ untranslated region increases non-small cell lung cancer risk. Cancer Res 68: 8535–8540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Curtin JA, Busam K, Pinkel D, Bastian BC . (2006). Somatic activation of KIT in distinct subtypes of melanoma. J Clin Oncol 24: 4340–4346.

    Article  CAS  PubMed  Google Scholar 

  • Demetri GD, von Mehren M, Blanke CD, Van den Abbeele AD, Eisenberg B, Roberts PJ et al. (2002). Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N Engl J Med 347: 472–480.

    Article  CAS  PubMed  Google Scholar 

  • Felicetti F, Errico MC, Bottero L, Segnalini P, Stoppacciaro A, Biffoni M et al. (2008). The promyelocytic leukemia zinc finger-microRNA-221/-222 pathway controls melanoma progression through multiple oncogenic mechanisms. Cancer Res 68: 2745–2754.

    Article  CAS  PubMed  Google Scholar 

  • Funasaka Y, Boulton T, Cobb M, Yarden Y, Fan B, Lyman SD et al. (1992). c-Kit-kinase induces a cascade of protein tyrosine phosphorylation in normal human melanocytes in response to mast cell growth factor and stimulates mitogen-activated protein kinase but is down-regulated in melanomas. Mol Biol Cell 3: 197–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gershenwald JE, Soong SJ, Balch CM . (2010). TNM staging system for cutaneous melanoma.and beyond. Ann Surg Oncol 17: 1475–1477.

    Article  PubMed  Google Scholar 

  • Godshalk SE, Bhaduri-McIntosh S, Slack FJ . (2008). Epstein-Barr virus-mediated dysregulation of human microRNA expression. Cell Cycle 7: 3595–3600.

    Article  CAS  PubMed  Google Scholar 

  • Halaban R, Krauthammer M, Pelizzola M, Cheng E, Kovacs D, Sznol M et al. (2009). PLoS One 4: e4563.

    Article  PubMed  PubMed Central  Google Scholar 

  • He H, Jazdzewski K, Li W, Liyanarachchi S, Nagy R, Volinia S et al. (2005). The role of microRNA genes in papillary thyroid carcinoma. Proc Natl Acad Sci USA 102: 19075–19080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodi FS, Friedlander P, Corless CL, Heinrich MC, Mac Rae S, Kruse A et al. (2008). Major response to imatinib mesylate in KIT-mutated melanoma. J Clin Oncol 26: 2046–2051.

    Article  CAS  PubMed  Google Scholar 

  • Huang S, Jean D, Luca M, Tainsky MA, Bar-Eli M . (1998). Loss of AP-2 results in downregulation of c-KIT and enhancement of melanoma tumorigenicity and metastasis. Embo J 17: 4358–4369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang S, Luca M, Gutman M, McConkey DJ, Langley KE, Lyman SD et al. (1996). Enforced c-KIT expression renders highly metastatic human melanoma cells susceptible to stem cell factor-induced apoptosis and inhibits their tumorigenic and metastatic potential. Oncogene 13: 2339–2347.

    CAS  PubMed  Google Scholar 

  • Igoucheva O, Alexeev V . (2009). MicroRNA-dependent regulation of cKit in cutaneous melanoma. Biochem Biophys Res Commun 379: 790–794.

    Article  CAS  PubMed  Google Scholar 

  • Jazdzewski K, Liyanarachchi S, Swierniak M, Pachucki J, Ringel MD, Jarzab B et al. (2009). Polymorphic mature microRNAs from passenger strand of pre-miR-146a contribute to thyroid cancer. Proc Natl Acad Sci USA 106: 1502–1505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang X, Zhou J, Yuen NK, Corless CL, Heinrich MC, Fletcher JA et al. (2008). Imatinib targeting of KIT-mutant oncoprotein in melanoma. Clin Cancer Res 14: 7726–7732.

    Article  CAS  PubMed  Google Scholar 

  • Koga Y, Pelizzola M, Cheng E, Krauthammer M, Sznol M, Ariyan S et al. (2009). Genome Res 19: 1462–1470.

  • Lassam N, Bickford S . (1992). Loss of c-kit expression in cultured melanoma cells. Oncogene 7: 51–56.

    CAS  PubMed  Google Scholar 

  • Lee CT, Risom T, Strauss WM . (2007). Evolutionary conservation of microRNA regulatory circuits: an examination of microRNA gene complexity and conserved microRNA-target interactions through metazoan phylogeny. DNA Cell Biol 26: 209–218.

    Article  CAS  PubMed  Google Scholar 

  • Lutzky J, Bauer J, Bastian BC . (2008). Dose-dependent, complete response to imatinib of a metastatic mucosal melanoma with a K642E KIT mutation. Pigment Cell Melanoma Res 21: 492–493.

    Article  PubMed  Google Scholar 

  • Medina PP, Slack FJ . (2008). microRNAs and cancer: an overview. Cell Cycle 7: 2485–2492.

    Article  CAS  PubMed  Google Scholar 

  • Meyle KD, Guldberg P . (2009). Genetic risk factors for melanoma. Hum Genet 126: 499–510.

    Article  CAS  PubMed  Google Scholar 

  • Mishra PJ, Bertino JR . (2009). MicroRNA polymorphisms: the future of pharmacogenomics, molecular epidemiology and individualized medicine. Pharmacogenomics 10: 399–416.

    Article  CAS  PubMed  Google Scholar 

  • Monsel G, Ortonne N, Bagot M, Bensussan A, Dumaz N. . (2009). c-Kit mutants require hypoxia-inducible factor 1alpha to transform melanocytes. Oncogene 29: 227–236.

    Article  PubMed  Google Scholar 

  • Natali PG, Nicotra MR, Winkler AB, Cavaliere R, Bigotti A, Ullrich A . (1992). Progression of human cutaneous melanoma is associated with loss of expression of c-kit proto-oncogene receptor. Int J Cancer 52: 197–201.

    Article  CAS  PubMed  Google Scholar 

  • Rajeevan H, Cheung KH, Gadagkar R, Stein S, Soundararajan U, Kidd JR et al. (2005). ALFRED: an allele frequency database for microevolutionary studies. Evol Bioinform Online 1: 1–10.

    Article  CAS  Google Scholar 

  • Ratner E, Lu L, Boeke M, Barnett R, Nallur S, Chin LJ et al. (2010). A KRAS-variant in ovarian cancer acts as a genetic marker of cancer risk. Cancer Res 70: 6509–6515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rigel DS . (2010). Trends in dermatology: melanoma incidence. Arch Dermatol 146: 318.

    Article  PubMed  Google Scholar 

  • Saetrom P, Biesinger J, Li SM, Smith D, Thomas LF, Majzoub K et al. (2009). A risk variant in an miR-125b binding site in BMPR1B is associated with breast cancer pathogenesis. Cancer Res 69: 7459–7465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sayers EW, Barrett T, Benson DA, Bryant SH, Canese K, Chetvernin V et al. (2009). Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 37: D5–15.

    Article  CAS  PubMed  Google Scholar 

  • Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM et al. (2001). dbSNP: the NCBI database of genetic variation. Nucleic Acids Res 29: 308–311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smalley KS, Contractor R, Nguyen TK, Xiao M, Edwards R, Muthusamy V et al. (2008). Identification of a novel subgroup of melanomas with KIT/cyclin-dependent kinase-4 overexpression. Cancer Res 68: 5743–5752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smalley KS, Nathanson KL, Flaherty KT . (2009a). Genetic subgrouping of melanoma reveals new opportunities for targeted therapy. Cancer Res 69: 3241–3244.

    Article  CAS  PubMed  Google Scholar 

  • Smalley KS, Sondak VK, Weber JS . (2009b). c-KIT signaling as the driving oncogenic event in sub-groups of melanomas. Histol Histopathol 24: 643–650.

    CAS  PubMed  Google Scholar 

  • Speed WC, Kang SP, Tuck DP, Harris LN, Kidd KK. (2009). Global variation in CYP2C8–CYP2C9 functional haplotypes. Pharmacogenomics J 9: 283–290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stefani G . (2007). Roles of microRNAs and their targets in cancer. Expert Opin Biol Ther 7: 1833–1840.

    Article  CAS  PubMed  Google Scholar 

  • Went PT, Dirnhofer S, Bundi M, Mirlacher M, Schraml P, Mangialaio S et al. (2004). Prevalence of KIT expression in human tumors. J Clin Oncol 22: 4514–4522.

    Article  CAS  PubMed  Google Scholar 

  • Zakut R, Perlis R, Eliyahu S, Yarden Y, Givol D, Lyman SD et al. (1993). KIT ligand (mast cell growth factor) inhibits the growth of KIT-expressing melanoma cells. Oncogene 8: 2221–2229.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Yale SPORE in Skin Cancer funded by the National Cancer Institute grant number 1 P50 CA121974 (R Halaban, PI) and by a generous gift from Milstein–Meyer Center for Melanoma Research. JW is supported by K08 CA124484. AMM is supported by the CTSA Grant number UL1 RR024139 from the National Center for Research Resources (NCRR), a component of the National Institutes of Health (NIH), and NIH roadmap for Medical Research. The testing of the samples from the several world populations was supported by 1 P01 GM057672 (KK Kidd, PI).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J B Weidhaas or F J Slack.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Godshalk, S., Paranjape, T., Nallur, S. et al. A Variant in a MicroRNA complementary site in the 3′ UTR of the KIT oncogene increases risk of acral melanoma. Oncogene 30, 1542–1550 (2011). https://doi.org/10.1038/onc.2010.536

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.536

Keywords

This article is cited by

Search

Quick links