Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

MicroRNA-192 and -215 are upregulated in human gastric cancer in vivo and suppress ALCAM expression in vitro

Abstract

The dismal outcome of gastric cancer patients highlights the need for diagnostic biomarkers and effective therapeutic targets, such as microRNAs. We sought to discover microRNAs involved in gastric cancer, and to elucidate their downstream target mechanisms. Both cultured gastric epithelial cells (HFE145 and NCI-N87) and primary human gastric tissues (31 non-neoplastic stomach (NS) and 25 gastric carcinomas (GC)) were studied. MicroRNA microarrays and quantitative RT–PCR were applied to discover and verify differentially expressed microRNAs. in vitro cell migration and invasion, cell proliferation, cell cycle and apoptosis assays were executed to elucidate biological effects of microRNA-192 and -215. Western blotting and luciferase assays were performed to confirm direct messenger RNA targeting by microRNA-192 and -215. MicroRNA microarray analyses revealed that 25 and 20 microRNAs were upregulated and downregulated in GC vs NS, respectively. Expression levels of both microRNA-192 and -215 were significantly higher in GC than in NS (P<0.05). Luciferase assays suggested that microRNA-215 inhibits activated leukocyte cell adhesion molecule (ALCAM) expression at the posttranscriptional level. In addition, expression levels of ALCAM were significantly lower in GC than in NS. Mimics and inhibitors, respectively, of microRNA-192 or -215 exerted no effect on cell cycle or apoptosis in the immortalized normal gastric cell line HFE145 or the gastric cancer cell line NCI-N87. However, mimics of microRNA-192 or -215 significantly increased growth rates in HFE145 cells, whereas inhibitors of microRNA-192 or -215 caused significant decreases in growth rates in NCI-N87 cells. ALCAM knockdown by an ALCAM-specific siRNA significantly increased cell growth in HFE145 cells. Both transfection of mimics of microRNA-192 or -215 and ALCAM knockdown by an ALCAM-specific siRNA significantly increased the migration of HFE145 cells. In conclusion, in gastric cancer, both microRNA-192 and -215 are overexpressed in vivo and exert cell growth and migration-promoting effects in vitro, thus representing potential microRNAs with a role in cancer in the human stomach.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Adiseshaiah P, Lindner DJ, Kalvakolanu DV, Reddy SP . (2007). FRA-1 proto-oncogene induces lung epithelial cell invasion and anchorage-independent growth in vitro, but is insufficient to promote tumor growth in vivo. Cancer Res 67: 6204–6211.

    Article  CAS  PubMed  Google Scholar 

  • Agarwal R, Mori Y, Cheng Y, Jin Z, Olaru AV, Hamilton JP et al. (2009). Silencing of claudin-11 is associated with increased invasiveness of gastric cancer cells. PLoS One 4: e8002.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ando T, Yoshida T, Enomoto S, Asada K, Tatematsu M, Ichinose M et al. (2009). DNA methylation of microRNA genes in gastric mucosae of gastric cancer patients: its possible involvement in the formation of epigenetic field defect. Int J Cancer 124: 2367–2374.

    Article  CAS  PubMed  Google Scholar 

  • Bartel DP . (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: 281–297.

    Article  CAS  PubMed  Google Scholar 

  • Braun CJ, Zhang X, Savelyeva I, Wolff S, Moll UM, Schepeler T et al. (2008). p53-Responsive micrornas 192 and 215 are capable of inducing cell cycle arrest. Cancer Res 68: 10094–10104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carbone M, Rizzo P, Grimley PM, Procopio A, Mew DJ, Shridhar V et al. (1997). Simian virus-40 large-T antigen binds p53 in human mesotheliomas. Nat Med 3: 908–912.

    Article  CAS  PubMed  Google Scholar 

  • Georges SA, Biery MC, Kim SY, Schelter JM, Guo J, Chang AN et al. (2008). Coordinated regulation of cell cycle transcripts by p53-Inducible microRNAs, miR-192 and miR-215. Cancer Res 68: 10105–10112.

    Article  CAS  PubMed  Google Scholar 

  • Guo J, Miao Y, Xiao B, Huan R, Jiang Z, Meng D et al. (2009). Differential expression of microRNA species in human gastric cancer versus non-tumorous tissues. J Gastroenterol Hepatol 24: 652–657.

    Article  CAS  PubMed  Google Scholar 

  • Jemal A, Siegel R, Ward E, Murray T, Xu J, Smigal C et al. (2006). Cancer statistics, 2006. CA Cancer J Clin 56: 106–130.

    Article  PubMed  Google Scholar 

  • Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ. . (2007). Cancer statistics, 2007. CA Cancer J Clin 57: 43–66.

    Article  PubMed  Google Scholar 

  • Jezierska A, Motyl T . (2009). Matrix Metalloproteinase-2 involvement in breast cancer progression: a mini-review. Med Sci Monit 15: RA32–RA40.

    CAS  PubMed  Google Scholar 

  • Jezierska A, Olszewski WP, Pietruszkiewicz J, Olszewski W, Matysiak W, Motyl T . (2006). Activated Leukocyte Cell Adhesion Molecule (ALCAM) is associated with suppression of breast cancer cells invasion. Med Sci Monit 12: BR245–BR256.

    CAS  PubMed  Google Scholar 

  • Khushalani N . (2008). Cancer of the esophagus and stomach. Mayo Clin Proc 83: 712–722.

    Article  PubMed  Google Scholar 

  • Kim JH, Takahashi T, Chiba I, Park JG, Birrer MJ, Roh JK et al. (1991). Occurrence of p53 gene abnormalities in gastric carcinoma tumors and cell lines. J Natl Cancer Inst 83: 938–943.

    Article  CAS  PubMed  Google Scholar 

  • Kim YK, Yu J, Han TS, Park SY, Namkoong B, Kim DH et al. (2009). Functional links between clustered microRNAs: suppression of cell-cycle inhibitors by microRNA clusters in gastric cancer. Nucleic Acids Res 37: 1672–1681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimura Y, Noguchi T, Kawahara K, Kashima K, Daa T, Yokoyama S . (2004). Genetic alterations in 102 primary gastric cancers by comparative genomic hybridization: gain of 20q and loss of 18q are associated with tumor progression. Mod Pathol 17: 1328–1337.

    Article  CAS  PubMed  Google Scholar 

  • Kristiansen G, Pilarsky C, Wissmann C, Stephan C, Weissbach L, Loy V et al. (2003). ALCAM/CD166 is up-regulated in low-grade prostate cancer and progressively lost in high-grade lesions. Prostate 54: 34–43.

    Article  PubMed  Google Scholar 

  • Li Z, Zhan W, Wang Z, Zhu B, He Y, Peng J et al. (2006). Inhibition of PRL-3 gene expression in gastric cancer cell line SGC7901 via microRNA suppressed reduces peritoneal metastasis. Biochem Biophys Res Commun 348: 229–237.

    Article  CAS  PubMed  Google Scholar 

  • Lytle JR, Yario TA, Steitz JA . (2007). Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5′ UTR as in the 3′ UTR. Proc Natl Acad Sci USA 104: 9667–9672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Motoyama K, Inoue H, Nakamura Y, Uetake H, Sugihara K, Mori M . (2008). Clinical significance of high mobility group A2 in human gastric cancer and its relationship to let-7 microRNA family. Clin Cancer Res 14: 2334–2340.

    Article  CAS  PubMed  Google Scholar 

  • Noguchi T, Wirtz HC, Michaelis S, Gabbert HE, Mueller W . (2001). Chromosomal imbalances in gastric cancer. Correlation with histologic subtypes and tumor progression. Am J Clin Pathol 115: 828–834.

    Article  CAS  PubMed  Google Scholar 

  • Ofori-Acquah SF, King JA . (2008). Activated leukocyte cell adhesion molecule: a new paradox in cancer. Transl Res 151: 122–128.

    Article  CAS  PubMed  Google Scholar 

  • Orom UA, Nielsen FC, Lund AH . (2008). MicroRNA-10a binds the 5′UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell 30: 460–471.

    Article  PubMed  Google Scholar 

  • Petrocca F, Visone R, Onelli MR, Shah MH, Nicoloso MS, de Martino I et al. (2008). E2F1-regulated microRNAs impair TGFbeta-dependent cell-cycle arrest and apoptosis in gastric cancer. Cancer Cell 13: 272–286.

    Article  CAS  PubMed  Google Scholar 

  • Rosso O, Piazza T, Bongarzone I, Rossello A, Mezzanzanica D, Canevari S et al. (2007). The ALCAM shedding by the metalloprotease ADAM17/TACE is involved in motility of ovarian carcinoma cells. Mol Cancer Res 5: 1246–1253.

    Article  CAS  PubMed  Google Scholar 

  • Shi XB, Tepper CG, White RW . (2008). Cancerous miRNAs and their regulation. Cell Cycle 7: 1529–1538.

    Article  CAS  PubMed  Google Scholar 

  • Song B, Wang Y, Kudo K, Gavin EJ, Xi Y, Ju J . (2008). miR-192 Regulates dihydrofolate reductase and cellular proliferation through the p53-microRNA circuit. Clin Cancer Res 14: 8080–8086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swart GW . (2002). Activated leukocyte cell adhesion molecule (CD166/ALCAM): developmental and mechanistic aspects of cell clustering and cell migration. Eur J Cell Biol 81: 313–321.

    Article  CAS  PubMed  Google Scholar 

  • Tsai NP, Lin YL, Wei LN . (2009). MicroRNA mir-346 targets the 5′-untranslated region of receptor-interacting protein 140 (RIP140) mRNA and up-regulates its protein expression. Biochem J 424: 411–418.

    Article  CAS  PubMed  Google Scholar 

  • Tsukamoto Y, Uchida T, Karnan S, Noguchi T, Nguyen LT, Tanigawa M et al (2008). Genome-wide analysis of DNA copy number alterations and gene expression in gastric cancer. J Pathol 216: 471–482.

    Article  CAS  PubMed  Google Scholar 

  • van Kempen LC, Meier F, Egeblad M, Kersten-Niessen MJ, Garbe C, Weidle UH et al. (2004). Truncation of activated leukocyte cell adhesion molecule: a gateway to melanoma metastasis. J Invest Dermatol 122: 1293–1301.

    Article  CAS  PubMed  Google Scholar 

  • Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F et al. (2006). A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 103: 2257–2261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, He YL, Cai SR, Zhan WH, Li ZR, Zhu BH et al. (2008). Expression and prognostic impact of PRL-3 in lymph node metastasis of gastric cancer: its molecular mechanism was investigated using artificial microRNA interference. Int J Cancer 123: 1439–1447.

    Article  CAS  PubMed  Google Scholar 

  • Xia L, Zhang D, Du R, Pan Y, Zhao L, Sun S et al. (2008). miR-15b and miR-16 modulate multidrug resistance by targeting BCL2 in human gastric cancer cells. Int J Cancer 123: 372–379.

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Duan X, Qian J, Li F . (2009). Abundant conserved microRNA target sites in the 5′-untranslated region and coding sequence. Genetica 137: 159–164.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z Jin.

Ethics declarations

Competing interests

The authors declare no conflicts of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, Z., Selaru, F., Cheng, Y. et al. MicroRNA-192 and -215 are upregulated in human gastric cancer in vivo and suppress ALCAM expression in vitro. Oncogene 30, 1577–1585 (2011). https://doi.org/10.1038/onc.2010.534

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.534

Keywords

This article is cited by

Search

Quick links