Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Efficient in vivo microRNA targeting of liver metastasis

Abstract

Targeting oncogenic microRNAs (miRNAs) is emerging as a promising strategy for cancer therapy. In this study, we provide proof of principle for the safety and efficacy of miRNA targeting against metastatic tumors. We tested the impact of targeting miR-182, a pro-metastatic miRNA frequently overexpressed in melanoma, the in vitro silencing of which represses invasion and induces apoptosis. Specifically, we assessed the effect of anti-miR-182 oligonucleotides synthesized with 2′ sugar modifications and a phosphorothioate backbone in a mouse model of melanoma liver metastasis. Luciferase imaging showed that mice treated with anti-miR-182 had a lower burden of liver metastases compared with control. We confirmed that miR-182 levels were effectively downregulated in the tumors of anti-miR-treated mice compared with tumors of control-treated mice, both in the liver and in the spleen. This effect was accompanied by an upregulation of multiple miR-182 direct targets. Transcriptional profiling of tumors treated with anti-miR-182 or with control oligonucleotides revealed an enrichment of genes controlling survival, adhesion and migration modulated in response to anti-miR-182 treatment. These data indicate that in vivo administration of anti-miRs allows for efficient miRNA targeting and concomitant upregulation of miRNA-controlled genes. Our results demonstrate that the use of anti-miR-182 is a promising therapeutic strategy for metastatic melanoma and provide a solid basis for testing similar strategies in human metastatic tumors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  • Bandres E, Malumbres R, Cubedo E, Honorato B, Zarate R, Labarga A et al. (2007). A gene signature of 8 genes could identify the risk of recurrence and progression in Dukes' B colon cancer patients. Oncol Rep 17: 1089–1094.

    CAS  PubMed  Google Scholar 

  • Brown BD, Gentner B, Cantore A, Colleoni S, Amendola M, Zingale A et al. (2007). Endogenous microRNA can be broadly exploited to regulate transgene expression according to tissue, lineage and differentiation state. Nat Biotechnol 25: 1457–1467.

    Article  CAS  PubMed  Google Scholar 

  • Camacho LH, Antonia S, Sosman J, Kirkwood JM, Gajewski TF, Redman B et al. (2009). Phase I/II trial of tremelimumab in patients with metastatic melanoma. J Clin Oncol 27: 1075–1081.

    Article  CAS  PubMed  Google Scholar 

  • Chi KN, Siu LL, Hirte H, Hotte SJ, Knox J, Kollmansberger C et al. (2008). A phase I study of OGX-011, a 2′-methoxyethyl phosphorothioate antisense to clusterin, in combination with docetaxel in patients with advanced cancer. Clin Cancer Res 14: 833–839.

    Article  CAS  PubMed  Google Scholar 

  • Chijiwa T, Abe Y, Ikoma N, Yamazaki H, Tsukamoto H, Suemizu H et al. (2009). Thrombospondin 2 inhibits metastasis of human malignant melanoma through microenvironment-modification in NOD/SCID/gammaCnull (NOG) mice. Int J Oncol 34: 5–13.

    CAS  PubMed  Google Scholar 

  • Croce CM . (2009). Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet 10: 704–714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis ME, Zuckerman JE, Choi CH, Seligson D, Tolcher A, Alabi CA et al. (2010). Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464: 1067–1070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis S, Propp S, Freier SM, Jones LE, Serra MJ, Kinberger G et al. (2009). Potent inhibition of microRNA in vivo without degradation. Nucleic Acids Res 37: 70–77.

    Article  CAS  PubMed  Google Scholar 

  • de Fougerolles A, Vornlocher HP, Maraganore J, Lieberman J . (2007). Interfering with disease: a progress report on siRNA-based therapeutics. Nat Rev Drug Discov 6: 443–453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dennis Jr G, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC et al. (2003). DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol 4: P3.

    Article  PubMed  Google Scholar 

  • Devi GR . (2006). siRNA-based approaches in cancer therapy. Cancer Gene Ther 13: 819–829.

    Article  CAS  PubMed  Google Scholar 

  • Elmen J, Lindow M, Schutz S, Lawrence M, Petri A, Obad S et al. (2008). LNA-mediated microRNA silencing in non-human primates. Nature 452: 896–899.

    Article  CAS  PubMed  Google Scholar 

  • Esau C, Davis S, Murray SF, Yu XX, Pandey SK, Pear M et al. (2006). miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab 3: 87–98.

    Article  CAS  PubMed  Google Scholar 

  • Garbe C, Leiter U . (2009). Melanoma epidemiology and trends. Clin Dermatol 27: 3–9.

    Article  PubMed  Google Scholar 

  • Grimm D, Streetz KL, Jopling CL, Storm TA, Pandey K, Davis CR et al. (2006). Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 441: 537–541.

    Article  CAS  PubMed  Google Scholar 

  • Guttilla IK, White BA . (2009). Coordinate regulation of FOXO1 by miR-27a, miR-96, and miR-182 in breast cancer cells. J Biol Chem 284: 23204–23216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hau P, Jachimczak P, Bogdahn U . (2009). Treatment of malignant gliomas with TGF-beta2 antisense oligonucleotides. Expert Rev Anticancer Ther 9: 1663–1674.

    Article  CAS  PubMed  Google Scholar 

  • Huang da W, Sherman BT, Lempicki RA . (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4: 44–57.

    Article  PubMed  Google Scholar 

  • Jansen B, Wacheck V, Heere-Ress E, Schlagbauer-Wadl H, Hoeller C, Lucas T et al. (2000). Chemosensitisation of malignant melanoma by BCL2 antisense therapy. Lancet 356: 1728–1733.

    Article  CAS  PubMed  Google Scholar 

  • Jemal A, Thun MJ, Ries LA, Howe HL, Weir HK, Center MM et al. (2008). Annual report to the nation on the status of cancer, 1975-2005, featuring trends in lung cancer, tobacco use, and tobacco control. J Natl Cancer Inst 100: 1672–1694.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang L, Mao P, Song L, Wu J, Huang J, Lin C et al. (2010). MiR-182 as a Prognostic Marker for Glioma Progression and Patient Survival. Am J Pathol 177 (1): 29–38.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kota J, Chivukula RR, O'Donnell KA, Wentzel EA, Montgomery CL, Hwang HW et al. (2009). Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 137: 1005–1017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krek A, Grün D, Poy MN, Wolf R, Rosenberg L, Epstein EJ et al. (2005). Combinatorial microRNA target predictions. Nat Genet 37: 495–500.

    Article  CAS  PubMed  Google Scholar 

  • Krumschnabel G, Manzl C, Villunger A . (2009). Caspase-2: killer, savior and safeguard--emerging versatile roles for an ill-defined caspase. Oncogene 28: 3093–3096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M et al. (2005). Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438: 685–689.

    Article  PubMed  Google Scholar 

  • Lanford RE, Hildebrandt-Eriksen ES, Petri A, Persson R, Lindow M, Munk ME et al. (2010). Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science 327: 198–201.

    Article  CAS  PubMed  Google Scholar 

  • Lewis BP, Burge CB, Bartel DP . (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120: 15–20.

    Article  CAS  PubMed  Google Scholar 

  • Ma L, Reinhardt F, Pan E, Soutschek J, Bhat B, Marcusson EG et al. (2010). Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model. Nat Biotechnol 28: 341–347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paschos KA, Majeed AW, Bird NC . (2010). Role of Kupffer cells in the outgrowth of colorectal cancer liver metastases. Hepatol Res 40: 83–94.

    Article  CAS  PubMed  Google Scholar 

  • Poulikakos PI, Zhang C, Bollag G, Shokat KM, Rosen N . (2010). RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature 464: 427–430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubin KM, Lawrence DP . (2009). Your patient with melanoma: staging, prognosis, and treatment. Oncology (Williston Park) 23: 13–21.

    Google Scholar 

  • Segura MF, Hanniford D, Menendez S, Reavie L, Zou X, Alvarez-Diaz S et al. (2009). Aberrant miR-182 expression promotes melanoma metastasis by repressing FOXO3 and microphthalmia-associated transcription factor. Proc Natl Acad Sci USA 106: 1814–1819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al. (2005). Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102: 15545–15550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tolcher AW, Reyno L, Venner PM, Ernst SD, Moore M, Geary RS et al. (2002). A randomized phase II and pharmacokinetic study of the antisense oligonucleotides ISIS 3521 and ISIS 5132 in patients with hormone-refractory prostate cancer. Clin Cancer Res 8: 2530–2535.

    CAS  PubMed  Google Scholar 

  • Tong AW, Nemunaitis J . (2008). Modulation of miRNA activity in human cancer: a new paradigm for cancer gene therapy? Cancer Gene Ther 15: 341–355.

    Article  CAS  PubMed  Google Scholar 

  • Trang P, Medina PP, Wiggins JF, Ruffino L, Kelnar K, Omotola M et al. (2010). Regression of murine lung tumors by the let-7 microRNA. Oncogene 29: 1580–1587.

    Article  CAS  PubMed  Google Scholar 

  • Treisman J, Garlie N . (2010). Systemic therapy for cutaneous melanoma. Clin Plast Surg 37: 127–146.

    Article  PubMed  Google Scholar 

  • Tsukita S, Furuse M, Itoh M . (2001). Multifunctional strands in tight junctions. Nat Rev Mol Cell Biol 2: 285–293.

    Article  CAS  PubMed  Google Scholar 

  • Valastyan S, Weinberg RA . (2009a). Assaying microRNA loss-of-function phenotypes in mammalian cells: emerging tools and their potential therapeutic utility. RNA Biol 6: 541–545.

    Article  CAS  PubMed  Google Scholar 

  • Valastyan S, Weinberg RA . (2009b). MicroRNAs: Crucial multi-tasking components in the complex circuitry of tumor metastasis. Cell Cycle 8: 3506–3512.

    Article  CAS  PubMed  Google Scholar 

  • Wiggins JF, Ruffino L, Kelnar K, Omotola M, Patrawala L, Brown D et al. (2010). Development of a Lung Cancer Therapeutic Based on the Tumor Suppressor MicroRNA-34. Cancer Res 70: 5923–5930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu S, Witmer PD, Lumayag S, Kovacs B, Valle D . (2007). MicroRNA (miRNA) transcriptome of mouse retina and identification of a sensory organ-specific miRNA cluster. J Biol Chem 282: 25053–25066.

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Higgins B, Kolinsky K, Packman K, Go Z, Iyer R et al. (2010). RG7204 (PLX4032), a Selective BRAFV600E Inhibitor, Displays Potent Antitumor Activity in Preclinical Melanoma Models. Cancer Res 70: 5518–5527.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank members of the NYU Cancer Institute Genomics Facility for array profiling. We are grateful to Dr Cindy Loomis and members of the NYU Histopathology (Tim Macatee) and the Immunohistochemistry Core Laboratories for tissue processing and histological staining, and to Dr Elisa de Stanchina (MSKCC Antitumor Assessment core facility) for mouse blood work. This work was funded by the ConCerN foundation and the Harry Lloyd Charitable Trust. CH is supported by the NYU Physician Scientist Training Program, National Cancer Center Postdoctoral fellowship and the NIH T32 CA09454-19 fellowship training grant. MFS by a National Cancer Center Postdoctoral fellowship.

Author contributions: CH, MFS, SM, EM and EH designed, and CH, MFS, SM, AG-S, BL, LC and EH performed the experiments; CH, MFS, AG-S, FD, JZ, EM and EH analyzed data; BL and DM assisted with the use of the IVIS equipment; CH, MFS, AG-S, IO, EM and EH wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E Hernando.

Ethics declarations

Competing interests

EGM is an employee and shareholder of Regulus Therapeutics. All other authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huynh, C., Segura, M., Gaziel-Sovran, A. et al. Efficient in vivo microRNA targeting of liver metastasis. Oncogene 30, 1481–1488 (2011). https://doi.org/10.1038/onc.2010.523

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.523

Keywords

This article is cited by

Search

Quick links