Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Fibroblast growth factor 2 regulates endothelial cell sensitivity to sunitinib

Abstract

The vascular endothelial growth factor (VEGF) receptor tyrosine kinase inhibitor sunitinib has been approved for first-line treatment of patients with metastatic renal cancer and is currently being trialled in other cancers. However, the effectiveness of this anti-angiogenic agent is limited by the presence of innate and acquired drug resistance. By screening a panel of candidate growth factors we identified fibroblast growth factor 2 (FGF2) as a potent regulator of endothelial cell sensitivity to sunitinib. We show that FGF2 supports endothelial proliferation and de novo tubule formation in the presence of sunitinib and that FGF2 can suppress sunitinib-induced retraction of tubules. Importantly, these effects of FGF2 were ablated by PD173074, a small molecule inhibitor of FGF receptor signalling. We also show that FGF2 can stimulate pro-angiogenic signalling pathways in endothelial cells despite the presence of sunitinib. Finally, analysis of clinical renal-cancer samples demonstrates that a large proportion of renal cancers strongly express FGF2. We suggest that therapeutic strategies designed to simultaneously target both VEGF and FGF2 signalling may prove more efficacious than sunitinib in renal cancer patients whose tumours express FGF2.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Abrams TJ, Lee LB, Murray LJ, Pryer NK, Cherrington JM . (2003). SU11248 inhibits KIT and platelet-derived growth factor receptor beta in preclinical models of human small cell lung cancer. Mol Cancer Ther 2: 471–478.

    Article  CAS  Google Scholar 

  • Bergers G, Song S, Meyer-Morse N, Bergsland E, Hanahan D . (2003). Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. J Clin Invest 111: 1287–1295.

    Article  CAS  Google Scholar 

  • Bergers G, Hanahan D . (2008). Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer 8: 592–603.

    Article  CAS  Google Scholar 

  • Britten CD, Kabbinavar F, Hecht JR, Bello CL, Li J, Baum C et al. (2008). A phase I and pharmacokinetic study of sunitinib administered daily for 2 weeks, followed by a 1-week off period. Cancer Chemother Pharmacol 61: 515–524.

    Article  CAS  Google Scholar 

  • Bryant DM, Stow JL . (2005). Nuclear translocation of cell-surface receptors: lessons from fibroblast growth factor. Traffic 6: 947–954.

    Article  CAS  Google Scholar 

  • Casanovas O, Hicklin DJ, Bergers G, Hanahan D . (2005). Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell 8: 299–309.

    Article  CAS  Google Scholar 

  • Crawford Y, Kasman I, Yu L, Zhong C, Wu X, Modrusan Z et al. (2009). PDGF-C mediates the angiogenic and tumorigenic properties of fibroblasts associated with tumors refractory to anti-VEGF treatment. Cancer Cell 15: 21–34.

    Article  CAS  Google Scholar 

  • Cross MJ, Claesson-Welsh L . (2001). FGF and VEGF function in angiogenesis: signalling pathways, biological responses and therapeutic inhibition. Trends Pharmacol Sci 22: 201–207.

    Article  CAS  Google Scholar 

  • Ebos JM, Lee CR, Kerbel RS . (2009). Tumor and host-mediated pathways of resistance and disease progression in response to antiangiogenic therapy. Clin Cancer Res 15: 5020–5025.

    Article  CAS  Google Scholar 

  • Eguchi J, Nomata K, Kanda S, Igawa T, Taide M, Koga S et al. (1992). Gene expression and immunohistochemical localization of basic fibroblast growth factor in renal cell carcinoma. Biochem Biophys Res Commun 183: 937–944.

    Article  CAS  Google Scholar 

  • Eliceiri BP, Klemke R, Stromblad S, Cheresh DA . (1998). Integrin alphavbeta3 requirement for sustained mitogen-activated protein kinase activity during angiogenesis. J Cell Biol 140: 1255–1263.

    Article  CAS  Google Scholar 

  • Ellis LM, Hicklin DJ . (2008). VEGF-targeted therapy: mechanisms of anti-tumour activity. Nat Rev Cancer 8: 579–591.

    Article  CAS  Google Scholar 

  • Faivre S, Delbaldo C, Vera K, Robert C, Lozahic S, Lassau N et al. (2006). Safety, pharmacokinetic, and antitumor activity of SU11248, a novel oral multitarget tyrosine kinase inhibitor, in patients with cancer. J Clin Oncol 24: 25–35.

    Article  CAS  Google Scholar 

  • Faivre S, Demetri G, Sargent W, Raymond E . (2007). Molecular basis for sunitinib efficacy and future clinical development. Nat Rev Drug Discov 6: 734–745.

    Article  CAS  Google Scholar 

  • Ferrara N . (2002). VEGF and the quest for tumour angiogenesis factors. Nat Rev Cancer 2: 795–803.

    Article  CAS  Google Scholar 

  • Ferrara N, Gerber HP, LeCouter J . (2003). The biology of VEGF and its receptors. Nat Med 9: 669–676.

    Article  CAS  Google Scholar 

  • Ferrara N, Hillan KJ, Gerber HP, Novotny W . (2004). Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov 3: 391–400.

    Article  CAS  Google Scholar 

  • Ferrara N, Kerbel RS . (2005). Angiogenesis as a therapeutic target. Nature 438: 967–974.

    Article  CAS  Google Scholar 

  • Fischer C, Jonckx B, Mazzone M, Zacchigna S, Loges S, Pattarini L et al. (2007). Anti-PlGF inhibits growth of VEGF(R)-inhibitor-resistant tumors without affecting healthy vessels. Cell 131: 463–475.

    Article  CAS  Google Scholar 

  • Fukata S, Inoue K, Kamada M, Kawada C, Furihata M, Ohtsuki Y et al. (2005). Levels of angiogenesis and expression of angiogenesis-related genes are prognostic for organ-specific metastasis of renal cell carcinoma. Cancer 103: 931–942.

    Article  CAS  Google Scholar 

  • Giavazzi R, Sennino B, Coltrini D, Garofalo A, Dossi R, Ronca R et al. (2003). Distinct role of fibroblast growth factor-2 and vascular endothelial growth factor on tumor growth and angiogenesis. Am J Pathol 162: 1913–1926.

    Article  CAS  Google Scholar 

  • Gualandris A, Rusnati M, Belleri M, Nelli EE, Bastaki M, Molinari-Tosatti MP et al. (1996). Basic fibroblast growth factor overexpression in endothelial cells: an autocrine mechanism for angiogenesis and angioproliferative diseases. Cell Growth Differ 7: 147–160.

    CAS  PubMed  Google Scholar 

  • Hanahan D, Folkman J . (1996). Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86: 353–364.

    Article  CAS  Google Scholar 

  • Huang D, Ding Y, Li Y, Luo WM, Zhang ZF, Snider J et al. (2010a). Sunitinib acts primarily on tumor endothelium rather than tumor cells to inhibit the growth of renal cell carcinoma. Cancer Res 70: 1053–1062.

    Article  CAS  Google Scholar 

  • Huang D, Ding Y, Zhou M, Rini BI, Petillo D, Qian CN et al. (2010b). Interleukin-8 mediates resistance to antiangiogenic agent sunitinib in renal cell carcinoma. Cancer Res 70: 1063–1071.

    Article  CAS  Google Scholar 

  • Joy A, Moffett J, Neary K, Mordechai E, Stachowiak EK, Coons S et al. (1997). Nuclear accumulation of FGF-2 is associated with proliferation of human astrocytes and glioma cells. Oncogene 14: 171–183.

    Article  CAS  Google Scholar 

  • Karaman MW, Herrgard S, Treiber DK, Gallant P, Atteridge CE, Campbell BT et al. (2008). A quantitative analysis of kinase inhibitor selectivity. Nat Biotechnol 26: 127–132.

    Article  CAS  Google Scholar 

  • Kerbel R, Folkman J . (2002). Clinical translation of angiogenesis inhibitors. Nat Rev Cancer 2: 727–739.

    Article  CAS  Google Scholar 

  • Kerbel RS . (2008). Tumor angiogenesis. N Engl J Med 358: 2039–2049.

    Article  CAS  Google Scholar 

  • Mancuso MR, Davis R, Norberg SM, O′Brien S, Sennino B, Nakahara T et al. (2006). Rapid vascular regrowth in tumors after reversal of VEGF inhibition. J Clin Invest 116: 2610–2621.

    Article  CAS  Google Scholar 

  • Mavria G, Vercoulen Y, Yeo M, Paterson H, Karasarides M, Marais R et al. (2006). ERK-MAPK signaling opposes Rho-kinase to promote endothelial cell survival and sprouting during angiogenesis. Cancer Cell 9: 33–44.

    Article  CAS  Google Scholar 

  • Mendel DB, Laird AD, Xin X, Louie SG, Christensen JG, Li G et al. (2003). In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: determination of a pharmacokinetic/pharmacodynamic relationship. Clin Cancer Res 9: 327–337.

    CAS  PubMed  Google Scholar 

  • Meyer RD, Latz C, Rahimi N . (2003). Recruitment and activation of phospholipase Cgamma1 by vascular endothelial growth factor receptor-2 are required for tubulogenesis and differentiation of endothelial cells. J Biol Chem 278: 16347–16355.

    Article  CAS  Google Scholar 

  • Mohammadi M, Froum S, Hamby JM, Schroeder MC, Panek RL, Lu GH et al. (1998). Crystal structure of an angiogenesis inhibitor bound to the FGF receptor tyrosine kinase domain. Embo J 17: 5896–5904.

    Article  CAS  Google Scholar 

  • Motzer RJ, Hutson TE, Tomczak P, Michaelson MD, Bukowski RM, Rixe O et al. (2007). Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med 356: 115–124.

    Article  CAS  Google Scholar 

  • Motzer RJ, Hutson TE, Tomczak P, Michaelson MD, Bukowski RM, Oudard S et al. (2009). Overall survival and updated results for sunitinib compared with interferon alfa in patients with metastatic renal cell carcinoma. J Clin Oncol 27: 3584–3590.

    Article  CAS  Google Scholar 

  • Nakatsu MN, Hughes CC . (2008). An optimized three-dimensional in vitro model for the analysis of angiogenesis. Methods Enzymol 443: 65–82.

    Article  CAS  Google Scholar 

  • Nanus DM, Schmitz-Drager BJ, Motzer RJ, Lee AC, Vlamis V, Cordon-Cardo C et al. (1993). Expression of basic fibroblast growth factor in primary human renal tumors: correlation with poor survival. J Natl Cancer Inst 85: 1597–1599.

    Article  CAS  Google Scholar 

  • O'Farrell AM, Abrams TJ, Yuen HA, Ngai TJ, Louie SG, Yee KW et al. (2003). SU11248 is a novel FLT3 tyrosine kinase inhibitor with potent activity in vitro and in vivo. Blood 101: 3597–3605.

    Article  CAS  Google Scholar 

  • Olsson AK, Dimberg A, Kreuger J, Claesson-Welsh L . (2006). VEGF receptor signalling - in control of vascular function. Nat Rev Mol Cell Biol 7: 359–371.

    Article  CAS  Google Scholar 

  • Pardo OE, Latigo J, Jeffery RE, Nye E, Poulsom R, Spencer-Dene B et al. (2009). The fibroblast growth factor receptor inhibitor PD173074 blocks small cell lung cancer growth in vitro and in vivo. Cancer Res 69: 8645–8651.

    Article  CAS  Google Scholar 

  • Pepper MS, Ferrara N, Orci L, Montesano R . (1992). Potent synergism between vascular endothelial growth factor and basic fibroblast growth factor in the induction of angiogenesis in vitro. Biochem Biophys Res Commun 189: 824–831.

    Article  CAS  Google Scholar 

  • Pintucci G, Moscatelli D, Saponara F, Biernacki PR, Baumann FG, Bizekis C et al. (2002). Lack of ERK activation and cell migration in FGF-2-deficient endothelial cells. FASEB J 16: 598–600.

    Article  CAS  Google Scholar 

  • Presta M, Tiberio L, Rusnati M, Dell′Era P, Ragnotti G . (1991). Basic fibroblast growth factor requires a long-lasting activation of protein kinase C to induce cell proliferation in transformed fetal bovine aortic endothelial cells. Cell Regul 2: 719–726.

    Article  CAS  Google Scholar 

  • Presta M, Dell′Era P, Mitola S, Moroni E, Ronca R, Rusnati M . (2005). Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev 16: 159–178.

    Article  CAS  Google Scholar 

  • Ravaud A, Hawkins R, Gardner JP, von der Maase H, Zantl N, Harper P et al. (2008). Lapatinib versus hormone therapy in patients with advanced renal cell carcinoma: a randomized phase III clinical trial. J Clin Oncol 26: 2285–2291.

    Article  CAS  Google Scholar 

  • Relf M, LeJeune S, Scott PA, Fox S, Smith K, Leek R et al. (1997). Expression of the angiogenic factors vascular endothelial cell growth factor, acidic and basic fibroblast growth factor, tumor growth factor beta-1, platelet-derived endothelial cell growth factor, placenta growth factor, and pleiotrophin in human primary breast cancer and its relation to angiogenesis. Cancer Res 57: 963–969.

    CAS  PubMed  Google Scholar 

  • Rini BI, Atkins MB . (2009). Resistance to targeted therapy in renal-cell carcinoma. Lancet Oncol 10: 992–1000.

    Article  CAS  Google Scholar 

  • Schweigerer L, Neufeld G, Friedman J, Abraham JA, Fiddes JC, Gospodarowicz D . (1987). Capillary endothelial cells express basic fibroblast growth factor, a mitogen that promotes their own growth. Nature 325: 257–259.

    Article  CAS  Google Scholar 

  • Slaton JW, Inoue K, Perrotte P, El-Naggar AK, Swanson DA, Fidler IJ et al. (2001). Expression levels of genes that regulate metastasis and angiogenesis correlate with advanced pathological stage of renal cell carcinoma. Am J Pathol 158: 735–743.

    Article  CAS  Google Scholar 

  • Turner N, Grose R . (2010). Fibroblast growth factor signalling: from development to cancer. Nat Rev Cancer 10: 116–129.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Alan Ashworth, Clare Isacke and Nicholas Turner for critical comments on the paper and Breakthrough Breast Cancer for research funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A R Reynolds.

Ethics declarations

Competing interests

Thomas Powles is the recipient of an educational research grant from Pfizer Global Pharmaceuticals. The other authors declare no potential conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Welti, J., Gourlaouen, M., Powles, T. et al. Fibroblast growth factor 2 regulates endothelial cell sensitivity to sunitinib. Oncogene 30, 1183–1193 (2011). https://doi.org/10.1038/onc.2010.503

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.503

Keywords

This article is cited by

Search

Quick links