Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

NAMPT overexpression in prostate cancer and its contribution to tumor cell survival and stress response

Abstract

Nicotinamide phosphoribosyltransferase (NAMPT) is a rate-limiting enzyme in regenerating nicotinamide adenine dinucleotide (NAD+) from nicotinamide in mammals. NAMPT has crucial roles for many cellular functions by regulating NAD+-dependent SIRT1 deacetylase. However, roles of NAMPT in cancer are poorly defined. In this study, we show that NAMPT is prominently overexpressed in human prostate cancer cells along with SIRT1. Elevation of NAMPT expression occurs early for the prostate neoplasia. Inhibition of NAMPT significantly suppresses cell growth in culture, soft agar colony formation, cell invasion and growth of xenografted prostate cancer cells in mice. NAMPT knockdown sensitizes prostate cancer cells to oxidative stress caused by H2O2 or chemotherapeutic treatment. Overexpression of NAMPT increases prostate cancer cell resistance to oxidative stress, which is partially blocked by SIRT1 knockdown. We demonstrate that in addition to modulating SIRT1 functions, the NAMPT inhibition reduces forkhead box, class ‘O’ (FOXO)3a protein expression and its downstream anti-oxidant genes catalase and manganese superoxide dismutase. Our results suggest important roles of concomitant upregulation of NAMPT and SIRT1 along with increased FOXO3a protein level for prostate carcinogenesis and their contribution to oxidative stress resistance of prostate cancer cells. These findings may have implications for exploring the NAMPT pathway for prostate cancer prevention and treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • Anderson RM, Bitterman KJ, Wood JG, Medvedik O, Sinclair DA . (2003). Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae. Nature 423: 181–185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balaban RS, Nemoto S, Finkel T . (2005). Mitochondria, oxidants, and aging. Cell 120: 483–495.

    Article  CAS  PubMed  Google Scholar 

  • Berrigan D, Perkins SN, Haines DC, Hursting SD . (2002). Adult-onset calorie restriction and fasting delay spontaneous tumorigenesis in p53-deficient mice. Carcinogenesis 23: 817–822.

    Article  CAS  PubMed  Google Scholar 

  • Bitterman KJ, Anderson RM, Cohen HY, Latorre-Esteves M, Sinclair DA . (2002). Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1. J Biol Chem 277: 45099–45107.

    Article  CAS  PubMed  Google Scholar 

  • Boily G, He XH, Pearce B, Jardine K, McBurney MW . (2009). SirT1-null mice develop tumors at normal rates but are poorly protected by resveratrol. Oncogene 28: 2882–2893.

    Article  CAS  PubMed  Google Scholar 

  • Boily G, Seifert EL, Bevilacqua L, He XH, Sabourin G, Estey C et al. (2008). SirT1 regulates energy metabolism and response to caloric restriction in mice. PLoS ONE 3: e1759.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bradbury CA, Khanim FL, Hayden R, Bunce CM, White DA, Drayson MT et al. (2005). Histone deacetylases in acute myeloid leukaemia show a distinctive pattern of expression that changes selectively in response to deacetylase inhibitors. Leukemia 19: 1751–1759.

    Article  CAS  PubMed  Google Scholar 

  • Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, Lin Y et al. (2004). Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303: 2011–2015.

    Article  CAS  PubMed  Google Scholar 

  • Busso N, Karababa M, Nobile M, Rolaz A, Van Gool F, Galli M et al. (2008). Pharmacological inhibition of nicotinamide phosphoribosyltransferase/visfatin enzymatic activity identifies a new inflammatory pathway linked to NAD. PLoS One 3: e2267.

    Article  PubMed  PubMed Central  Google Scholar 

  • Charvet C, Alberti I, Luciano F, Jacquel A, Bernard A, Auberger P et al. (2003). Proteolytic regulation of Forkhead transcription factor FOXO3a by caspase-3-like proteases. Oncogene 22: 4557–4568.

    Article  CAS  PubMed  Google Scholar 

  • Chen WY, Cooper TK, Zahnow CA, Overholtzer M, Zhao Z, Ladanyi M et al. (2004). Epigenetic and genetic loss of Hic1 function accentuates the role of p53 in tumorigenesis. Cancer Cell 6: 387–398.

    Article  CAS  PubMed  Google Scholar 

  • Chen WY, Wang DH, Yen RC, Luo J, Gu W, Baylin SB . (2005). Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53-dependent DNA-damage responses. Cell 123: 437–448.

    Article  CAS  PubMed  Google Scholar 

  • Chu F, Chou PM, Zheng X, Mirkin BL, Rebbaa A . (2005). Control of multidrug resistance gene mdr1 and cancer resistance to chemotherapy by the longevity gene sirt1. Cancer Res 65: 10183–10187.

    Article  CAS  PubMed  Google Scholar 

  • Costello LC, Franklin RB . (2006). The clinical relevance of the metabolism of prostate cancer; zinc and tumor suppression: connecting the dots. Mol Cancer 5: 17.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cressman VL, Backlund DC, Hicks EM, Gowen LC, Godfrey V, Koller BH . (1999). Mammary tumor formation in p53- and BRCA1-deficient mice. Cell Growth Differ 10: 1–10.

    CAS  PubMed  Google Scholar 

  • Dai Y, Ngo D, Forman LW, Qin DC, Jacob J, Faller DV . (2007). Sirtuin 1 is required for antagonist-induced transcriptional repression of androgen-responsive genes by the androgen receptor. Mol Endocrinol 21: 1807–1821.

    Article  CAS  PubMed  Google Scholar 

  • Daitoku H, Hatta M, Matsuzaki H, Aratani S, Ohshima T, Miyagishi M et al. (2004). Silent information regulator 2 potentiates Foxo1-mediated transcription through its deacetylase activity. Proc Natl Acad Sci USA 101: 10042–10047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Marzo AM, Platz EA, Sutcliffe S, Xu J, Gronberg H, Drake CG et al. (2007). Inflammation in prostate carcinogenesis. Nat Rev Cancer 7: 256–269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drevs J, Loser R, Rattel B, Esser N . (2003). Antiangiogenic potency of FK866/K22.175, a new inhibitor of intracellular NAD biosynthesis, in murine renal cell carcinoma. Anticancer Res 23: 4853–4858.

    CAS  PubMed  Google Scholar 

  • Firestein R, Blander G, Michan S, Oberdoerffer P, Ogino S, Campbell J et al. (2008). The SIRT1 deacetylase suppresses intestinal tumorigenesis and colon cancer growth. PLoS ONE 3: e2020.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ford J, Jiang M, Milner J . (2005). Cancer-specific functions of SIRT1 enable human epithelial cancer cell growth and survival. Cancer Res 65: 10457–10463.

    Article  CAS  PubMed  Google Scholar 

  • Fu M, Liu M, Sauve AA, Jiao X, Zhang X, Wu X et al. (2006). Hormonal control of androgen receptor function through SIRT1. Mol Cell Biol 26: 8122–8135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukuhara A, Matsuda M, Nishizawa M, Segawa K, Tanaka M, Kishimoto K et al. (2005). Visfatin: a protein secreted by visceral fat that mimics the effects of insulin. Science 307: 426–430.

    Article  CAS  PubMed  Google Scholar 

  • Fulco M, Cen Y, Zhao P, Hoffman EP, McBurney MW, Sauve AA et al. (2008). Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt. Dev Cell 14: 661–673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garten A, Petzold S, Korner A, Imai S, Kiess W . (2009). Nampt: linking NAD biology, metabolism and cancer. Trends Endocrinol Metab 20: 130–138.

    Article  CAS  PubMed  Google Scholar 

  • Gartner EM, Burger AM, Lorusso PM . (2010). Poly(adp-ribose) polymerase inhibitors: a novel drug class with a promising future. Cancer J 16: 83–90.

    Article  CAS  PubMed  Google Scholar 

  • Grozinger CM, Chao ED, Blackwell HE, Moazed D, Schreiber SL . (2001). Identification of a class of small molecule inhibitors of the sirtuin family of NAD-dependent deacetylases by phenotypic screening. J Biol Chem 276: 38837–38843.

    Article  CAS  PubMed  Google Scholar 

  • Harvey M, McArthur MJ, Montgomery Jr CA, Butel JS, Bradley A, Donehower LA . (1993). Spontaneous and carcinogen-induced tumorigenesis in p53-deficient mice. Nat Genet 5: 225–229.

    Article  CAS  PubMed  Google Scholar 

  • Hasmann M, Schemainda I . (2003). FK866, a highly specific noncompetitive inhibitor of nicotinamide phosphoribosyltransferase, represents a novel mechanism for induction of tumor cell apoptosis. Cancer Res 63: 7436–7442.

    CAS  PubMed  Google Scholar 

  • Huffman DM, Grizzle WE, Bamman MM, Kim JS, Eltoum IA, Elgavish A et a.l (2007). SIRT1 is significantly elevated in mouse and human prostate cancer. Cancer Res 67: 6612–6618.

    Article  CAS  PubMed  Google Scholar 

  • Hufton SE, Moerkerk PT, Brandwijk R, de Bruine AP, Arends JW, Hoogenboom HR . (1999). A profile of differentially expressed genes in primary colorectal cancer using suppression subtractive hybridization. FEBS Lett 463: 77–82.

    Article  CAS  PubMed  Google Scholar 

  • Hwang CS, Shemorry A, Varshavsky A . (2010). N-terminal acetylation of cellular proteins creates specific degradation signals. Science 327: 973–977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jang KY, Hwang SH, Kwon KS, Kim KR, Choi HN, Lee NR et al. (2008). SIRT1 expression is associated with poor prognosis of diffuse large B-cell lymphoma. Am J Surg Pathol 32: 1523–1531.

    Article  PubMed  Google Scholar 

  • Jang KY, Kim KS, Hwang SH, Kwon KS, Kim KR, Park HS et al. (2009). Expression and prognostic significance of SIRT1 in ovarian epithelial tumours. Pathology 41: 366–371.

    Article  CAS  PubMed  Google Scholar 

  • Jung-Hynes B, Nihal M, Zhong W, Ahmad N . (2009). Role of sirtuin histone deacetylase SIRT1 in prostate cancer. A target for prostate cancer management via its inhibition? J Biol Chem 284: 3823–3832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karger S, Weidinger C, Krause K, Sheu SY, Aigner T, Gimm O et al. (2009). FOXO3a: a novel player in thyroid carcinogenesis? Endocr Relat Cancer 16: 189–199.

    Article  CAS  PubMed  Google Scholar 

  • Kikuno N, Shiina H, Urakami S, Kawamoto K, Hirata H, Tanaka Y et al. (2008). Genistein mediated histone acetylation and demethylation activates tumor suppressor genes in prostate cancer cells. Int J Cancer 123: 552–560.

    Article  CAS  PubMed  Google Scholar 

  • Kojima K, Ohhashi R, Fujita Y, Hamada N, Akao Y, Nozawa Y et al. (2008). A role for SIRT1 in cell growth and chemoresistance in prostate cancer PC3 and DU145 cells. Biochem Biophys Res Commun 373: 423–428.

    Article  CAS  PubMed  Google Scholar 

  • Kops GJ, Dansen TB, Polderman PE, Saarloos I, Wirtz KW, Coffer PJ et al. (2002). Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress. Nature 419: 316–321.

    Article  CAS  PubMed  Google Scholar 

  • Lain S, Hollick JJ, Campbell J, Staples OD, Higgins M, Aoubala M et al. (2008). Discovery, in vivo activity, and mechanism of action of a small-molecule p53 activator. Cancer Cell 13: 454–463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee WH, Morton RA, Epstein JI, Brooks JD, Campbell PA, Bova GS et al. (1994). Cytidine methylation of regulatory sequences near the pi-class glutathione S-transferase gene accompanies human prostatic carcinogenesis. Proc Natl Acad Sci USA 91: 11733–11737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Xu W, McBurney MW, Longo VD . (2008). SirT1 inhibition reduces IGF-I/IRS-2/Ras/ERK1/2 signaling and protects neurons. Cell Metab 8: 38–48.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin SJ, Defossez PA, Guarente L . (2000). Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 289: 2126–2128.

    Article  CAS  PubMed  Google Scholar 

  • Liu Y . (2006). Fatty acid oxidation is a dominant bioenergetic pathway in prostate cancer. Prostate Cancer Prostatic Dis 9: 230–234.

    Article  CAS  PubMed  Google Scholar 

  • Luo J, Nikolaev AY, Imai S, Chen D, Su F, Shiloh A et al. (2001). Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell 107: 137–148.

    Article  CAS  PubMed  Google Scholar 

  • Modur V, Nagarajan R, Evers BM, Milbrandt J . (2002). FOXO proteins regulate tumor necrosis factor-related apoptosis inducing ligand expression. Implications for PTEN mutation in prostate cancer. J Biol Chem 277: 47928–47937.

    Article  CAS  PubMed  Google Scholar 

  • Motta MC, Divecha N, Lemieux M, Kamel C, Chen D, Gu W et al. (2004). Mammalian SIRT1 represses forkhead transcription factors. Cell 116: 551–563.

    Article  CAS  PubMed  Google Scholar 

  • Muruganandham M, Alfieri AA, Matei C, Chen Y, Sukenick G, Schemainda I et al. (2005). Metabolic signatures associated with a NAD synthesis inhibitor-induced tumor apoptosis identified by 1H-decoupled-31P magnetic resonance spectroscopy. Clin Cancer Res 11: 3503–3513.

    Article  CAS  PubMed  Google Scholar 

  • Nakahata Y, Sahar S, Astarita G, Kaluzova M, Sassone-Corsi P . (2009). Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1. Science 324: 654–657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson WG, De Marzo AM, Isaacs WB . (2003). Prostate cancer. N Engl J Med 349: 366–381.

    Article  CAS  PubMed  Google Scholar 

  • Nemoto S, Fergusson MM, Finkel T . (2004). Nutrient availability regulates SIRT1 through a forkhead-dependent pathway. Science 306: 2105–2108.

    Article  CAS  PubMed  Google Scholar 

  • Nemoto S, Finkel T . (2002). Redox regulation of forkhead proteins through a p66shc-dependent signaling pathway. Science 295: 2450–2452.

    Article  CAS  PubMed  Google Scholar 

  • Nosho K, Shima K, Irahara N, Kure S, Firestein R, Baba Y et al. (2009). SIRT1 histone deacetylase expression is associated with microsatellite instability and CpG island methylator phenotype in colorectal cancer. Mod Pathol 22: 922–932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oberdoerffer P, Michan S, McVay M, Mostoslavsky R, Vann J, Park SK et al. (2008). SIRT1 redistribution on chromatin promotes genomic stability but alters gene expression during aging. Cell 135: 907–918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ognjanovic S, Bao S, Yamamoto SY, Garibay-Tupas J, Samal B, Bryant-Greenwood GD . (2001). Genomic organization of the gene coding for human pre-B-cell colony enhancing factor and expression in human fetal membranes. J Mol Endocrinol 26: 107–117.

    Article  CAS  PubMed  Google Scholar 

  • Ota H, Tokunaga E, Chang K, Hikasa M, Iijima K, Eto M et al. (2006). Sirt1 inhibitor, Sirtinol, induces senescence-like growth arrest with attenuated Ras-MAPK signaling in human cancer cells. Oncogene 25: 176–185.

    Article  CAS  PubMed  Google Scholar 

  • Plas DR, Thompson CB . (2003). Akt activation promotes degradation of tuberin and FOXO3a via the proteasome. J Biol Chem 278: 12361–12366.

    Article  CAS  PubMed  Google Scholar 

  • Ramsey KM, Yoshino J, Brace CS, Abrassart D, Kobayashi Y, Marcheva B et al. (2009). Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science 324: 651–654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Revollo JR, Grimm AA, Imai S . (2004). The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltransferase regulates Sir2 activity in mammalian cells. J Biol Chem 279: 50754–50763.

    Article  CAS  PubMed  Google Scholar 

  • Revollo JR, Korner A, Mills KF, Satoh A, Wang T, Garten A et al. (2007). Nampt/PBEF/Visfatin regulates insulin secretion in beta cells as a systemic NAD biosynthetic enzyme. Cell Metab 6: 363–375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samal B, Sun Y, Stearns G, Xie C, Suggs S, McNiece I . (1994). Cloning and characterization of the cDNA encoding a novel human pre-B-cell colony-enhancing factor. Mol Cell Biol 14: 1431–1437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saunders LR, Verdin E . (2007). Sirtuins: critical regulators at the crossroads between cancer and aging. Oncogene 26: 5489–5504.

    Article  CAS  PubMed  Google Scholar 

  • Schreiber V, Dantzer F, Ame JC, de Murcia G . (2006). Poly(ADP-ribose): novel functions for an old molecule. Nat Rev Mol Cell Biol 7: 517–528.

    Article  CAS  PubMed  Google Scholar 

  • Shukla S, Shukla M, Maclennan GT, Fu P, Gupta S . (2009). Deregulation of FOXO3A during prostate cancer progression. Int J Oncol 34: 1613–1620.

    CAS  PubMed  Google Scholar 

  • Skokowa J, Lan D, Thakur BK, Wang F, Gupta K, Cario G et al. (2009). NAMPT is essential for the G-CSF-induced myeloid differentiation via a NAD(+)-sirtuin-1-dependent pathway. Nat Med 15: 151–158.

    Article  CAS  PubMed  Google Scholar 

  • Trachootham D, Zhou Y, Zhang H, Demizu Y, Chen Z, Pelicano H et al. (2006). Selective killing of oncogenically transformed cells through a ROS-mediated mechanism by beta-phenylethyl isothiocyanate. Cancer Cell 10: 241–252.

    Article  CAS  PubMed  Google Scholar 

  • Turkbey B, Pinto PA, Choyke PL . (2009). Imaging techniques for prostate cancer: implications for focal therapy. Nat Rev Urol 6: 191–203.

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Beijnum JR, Moerkerk PT, Gerbers AJ, De Bruine AP, Arends JW, Hoogenboom HR et al. (2002). Target validation for genomics using peptide-specific phage antibodies: a study of five gene products overexpressed in colorectal cancer. Int J Cancer 101: 118–127.

    Article  CAS  PubMed  Google Scholar 

  • van der Veer E, Ho C, O′Neil C, Barbosa N, Scott R, Cregan SP et al. (2007). Extension of human cell lifespan by nicotinamide phosphoribosyltransferase. J Biol Chem 282: 10841–10845.

    Article  CAS  PubMed  Google Scholar 

  • Vaziri H, Dessain SK, Ng Eaton E, Imai SI, Frye RA, Pandita TK et al. (2001). hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 107: 149–159.

    Article  CAS  PubMed  Google Scholar 

  • Venkatachalam S, Shi YP, Jones SN, Vogel H, Bradley A, Pinkel D et al. (1998). Retention of wild-type p53 in tumors from p53 heterozygous mice: reduction of p53 dosage can promote cancer formation. Embo J 17: 4657–4667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang RH, Sengupta K, Li C, Kim HS, Cao L, Xiao C et al. (2008). Impaired DNA damage response, genome instability, and tumorigenesis in SIRT1 mutant mice. Cancer Cell 14: 312–323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warburg O . (1931). The Metabolism of Tumors. Smith RR: New York.

    Google Scholar 

  • Watson M, Roulston A, Belec L, Billot X, Marcellus R, Bedard D et al. (2009). The small molecule GMX1778 is a potent inhibitor of NAD+ biosynthesis: strategy for enhanced therapy in nicotinic acid phosphoribosyltransferase 1-deficient tumors. Mol Cell Biol 29: 5872–5888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams AC, Ramsden DB . (2005). Autotoxicity, methylation and a road to the prevention of Parkinson's disease. J Clin Neurosci 12: 6–11.

    Article  CAS  PubMed  Google Scholar 

  • Xiao D, Lew KL, Zeng Y, Xiao H, Marynowski SW, Dhir R et al. (2006). Phenethyl isothiocyanate-induced apoptosis in PC-3 human prostate cancer cells is mediated by reactive oxygen species-dependent disruption of the mitochondrial membrane potential. Carcinogenesis 27: 2223–2234.

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Yang T, Baur JA, Perez E, Matsui T, Carmona JJ et al. (2007). Nutrient-sensitive mitochondrial NAD(+) levels dictate cell survival. Cell 130: 1095–1107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye SQ, Simon BA, Maloney JP, Zambelli-Weiner A, Gao L, Grant A et al. (2005). Pre-B-cell colony-enhancing factor as a potential novel biomarker in acute lung injury. Am J Respir Crit Care Med 171: 361–370.

    Article  PubMed  Google Scholar 

  • Yu SW, Andrabi SA, Wang H, Kim NS, Poirier GG, Dawson TM et al. (2006). Apoptosis-inducing factor mediates poly(ADP-ribose) (PAR) polymer-induced cell death. Proc Natl Acad Sci USA 103: 18314–18319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study is supported by the start-up fund from City of Hope, career development award from STOPCANCER foundation and research scholar award from American Cancer Society (WYC). EA was supported by a training grant awarded to CSULB from California Institute of Regenerative Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W Y Chen.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, B., Hasan, M., Alvarado, E. et al. NAMPT overexpression in prostate cancer and its contribution to tumor cell survival and stress response. Oncogene 30, 907–921 (2011). https://doi.org/10.1038/onc.2010.468

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.468

Keywords

This article is cited by

Search

Quick links