Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Sugar-free approaches to cancer cell killing

Abstract

Tumors show an increased rate of glucose uptake and utilization. For this reason, glucose analogs are used to visualize tumors by the positron emission tomography technique, and inhibitors of glycolytic metabolism are being tested in clinical trials. Upregulation of glycolysis confers several advantages to tumor cells: it promotes tumor growth and has also been shown to interfere with cell death at multiple levels. Enforcement of glycolysis inhibits apoptosis induced by cytokine deprivation. Conversely, antiglycolytic agents enhance cell death induced by radio- and chemotherapy. Synergistic effects are likely due to regulation of the apoptotic machinery, as glucose regulates activation and levels of proapoptotic BH3-only proteins such as Bim, Bad, Puma and Noxa, as well as the antiapoptotic Bcl-2 family of proteins. Moreover, inhibition of glucose metabolism sensitizes cells to death ligands. Glucose deprivation and antiglycolytic drugs induce tumor cell death, which can proceed through necrosis or through mitochondrial or caspase-8-mediated apoptosis. We will discuss how oncogenic pathways involved in metabolic stress signaling, such as p53, AMPK (adenosine monophosphate-activated protein kinase) and Akt/mTOR (mammalian target of rapamycin), influence sensitivity to inhibition of glucose metabolism. Finally, we will analyze the rationale for the use of antiglycolytic inhibitors in the clinic, either as single agents or as a part of combination therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  • Aft RL, Zhang FW, Gius D . (2002). Evaluation of 2-deoxy-D-glucose as a chemotherapeutic agent: mechanism of cell death. Br J Cancer 87: 805–812.

    CAS  PubMed Central  Google Scholar 

  • Alves NL, Derks IA, Berk E, Spijker R, van Lier RA, Eldering E . (2006). The Noxa/Mcl-1 axis regulates susceptibility to apoptosis under glucose limitation in dividing T cells. Immunity 24: 703–716.

    Article  CAS  Google Scholar 

  • Ben Sahra I, Laurent K, Giuliano S, Larbret F, Ponzio G, Gounon P et al. (2010). Targeting cancer cell metabolism: the combination of metformin and 2-deoxyglucose induces p53-dependent apoptosis in prostate cancer cells. Cancer Res 70: 2465–2475.

    CAS  PubMed Central  Google Scholar 

  • Boya P, Gonzalez-Polo R-A, Casares N, Perfettini J-L, Dessen P, Larochette N et al. (2005). Inhibition of macroautophagy triggers apoptosis. Mol Cell Biol 25: 1025–1040.

    CAS  PubMed Central  Google Scholar 

  • Buzzai M, Bauer DE, Jones RG, DeBerardinis RJ, Hatzivassiliou G, Elstrom RL et al. (2005). The glucose dependence of Akt-transformed cells can be reversed by pharmacologic activation of fatty acid beta-oxidation. Oncogene 24: 4165–4173.

    CAS  Google Scholar 

  • Caro-Maldonado A, Tait SWG, Ramirez-Peinado S, Ricci JE, Fabregat I, Green DR et al. (2010). Glucose deprivation induces an atypical form of apoptosis mediated by caspase-8 in Bax-, Bak-deficient cells. Cell Death Differ 17: 1335–1344.

    CAS  Google Scholar 

  • Chiaradonna F, Sacco E, Manzoni R, Giorgio M, Vanoni M, Alberghina L . (2006). Ras-dependent carbon metabolism and transformation in mouse fibroblasts. Oncogene 25: 5391–5404.

    CAS  Google Scholar 

  • Choo AY, Kim SG, Vander Heiden MG, Mahoney SJ, Vu H, Yoon S-O et al. (2010). Glucose addiction of TSC null cells is caused by failed mTORC1-dependent balancing of metabolic demand with supply. Mol Cell 38: 487–499.

    CAS  PubMed Central  Google Scholar 

  • Concannon CG, Tuffy LP, Weisova P, Bonner HP, Davila D, Bonner C et al. (2010). AMP kinase-mediated activation of the BH3-only protein Bim couples energy depletion to stress-induced apoptosis. J Cell Biol 189: 83–94.

    CAS  PubMed Central  Google Scholar 

  • Danial NN, Gramm CF, Scorrano L, Zhang C-Y, Krauss S, Ranger AM et al. (2003). BAD and glucokinase reside in a mitochondrial complex that integrates glycolysis and apoptosis. Nature 424: 952–956.

    CAS  PubMed Central  Google Scholar 

  • Danial NN, Walensky LD, Zhang C-Y, Choi CS, Fisher JK, Molina AJA et al. (2008). Dual role of proapoptotic BAD in insulin secretion and beta cell survival. Nat Med 14: 144–153.

    CAS  PubMed Central  Google Scholar 

  • De Lena M, Lorusso V, Latorre A, Fanizza G, Gargano G, Caporusso L et al. (2001). Paclitaxel, cisplatin and lonidamine in advanced ovarian cancer. A phase II study. Eur J Cancer 37: 364–368.

    CAS  Google Scholar 

  • DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB . (2008). The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 7: 11–20.

    CAS  Google Scholar 

  • DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M, Wehrli S et al. (2007). Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci 104: 19345–19350.

    CAS  Google Scholar 

  • Degenhardt K, Mathew R, Beaudoin B, Bray K, Anderson D, Chen G et al. (2006). Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell 10: 51–64.

    CAS  PubMed Central  Google Scholar 

  • Di Cosimo S . (2003). Lonidamine: efficacy and safety in clinical trials for the treatment of solid tumors. Drugs Today (Barc) 39: 157–174.

    CAS  Google Scholar 

  • DiPaola RS, Dvorzhinski D, Thalasila A, Garikapaty V, Doram D, May M et al. (2008). Therapeutic starvation and autophagy in prostate cancer: a new paradigm for targeting metabolism in cancer therapy. Prostate 68: 1743–1752.

    CAS  PubMed Central  Google Scholar 

  • Dwarakanath BS, Singh S, Jain V . (1999). Optimization of tumour radiotherapy: part V--radiosensitization by 2-deoxy-D-glucose and DNA ligand hoechst-33342 in a murine tumour. Indian J Exp Biol 37: 865–870.

    CAS  Google Scholar 

  • Dwarkanath BS, Zolzer F, Chandana S, Bauch T, Adhikari JS, Muller WU et al. (2001). Heterogeneity in 2-deoxy-D-glucose-induced modifications in energetics and radiation responses of human tumor cell lines. Int J Radiat Oncol Biol Phys 50: 1051–1061.

    CAS  Google Scholar 

  • Egler V, Korur S, Failly M, Boulay JL, Imber R, Lino MM et al. (2008). Histone deacetylase inhibition and blockade of the glycolytic pathway synergistically induce glioblastoma cell death. Clin Cancer Res 14: 3132–3140.

    CAS  Google Scholar 

  • Elstrom RL, Bauer DE, Buzzai M, Karnauskas R, Harris MH, Plas DR et al. (2004). Akt stimulates aerobic glycolysis in cancer cells. Cancer Res 64: 3892–3899.

    CAS  Google Scholar 

  • Fan Y, Dickman KG, Zong W-X . (2010). Akt and c-Myc differentially activate cellular metabolic programs and prime cells to bioenergetic inhibition. J Biol Chem 285: 7324–7333.

    CAS  Google Scholar 

  • Frenzel A, Grespi F, Chmelewskij W, Villunger A . (2009). Bcl2 family proteins in carcinogenesis and the treatment of cancer. Apoptosis 14: 584–596.

    CAS  PubMed Central  Google Scholar 

  • Gao P, Tchernyshyov I, Chang T-C, Lee Y-S, Kita K, Ochi T et al. (2009). c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature 458: 762–765.

    CAS  PubMed Central  Google Scholar 

  • Geschwind J-FH, Ko YH, Torbenson MS, Magee C, Pedersen PL . (2002). Novel therapy for liver cancer: direct intraarterial injection of a potent inhibitor of ATP production. Cancer Res 62: 3909–3913.

    CAS  Google Scholar 

  • Gonin-Giraud S, Mathieu AL, Diocou S, Tomkowiak M, Delorme G, Marvel J . (2002). Decreased glycolytic metabolism contributes to but is not the inducer of apoptosis following IL-3-starvation. Cell Death Differ 9: 1147–1157.

    CAS  Google Scholar 

  • Gottlob K, Majewski N, Kennedy S, Kandel E, Robey RB, Hay N . (2001). Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase. Genes Dev 15: 1406–1418.

    CAS  PubMed Central  Google Scholar 

  • Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS et al. (2008). AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 30: 214–226.

    CAS  PubMed Central  Google Scholar 

  • Haga N, Naito M, Seimiya H, Tomida A, Dong J, Tsuruo T . (1998). 2-Deoxyglucose inhibits chemotherapeutic drug-induced apoptosis in human monocytic leukemia U937 cells with inhibition of c-Jun N-terminal kinase 1/stress-activated protein kinase activation. Int J Cancer 76: 86–90.

    CAS  Google Scholar 

  • Hardie DG . (2007). AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev Mol Cell Biol 8: 774–785.

    CAS  Google Scholar 

  • Hernlund E, Hjerpe E, Avall-Lundqvist E, Shoshan M . (2009). Ovarian carcinoma cells with low levels of beta-F1-ATPase are sensitive to combined platinum and 2-deoxy-D-glucose treatment. Mol Cancer Ther 8: 1916–1923.

    CAS  Google Scholar 

  • Hulleman E, Kazemier KM, Holleman A, VanderWeele DJ, Rudin CM, Broekhuis MJC et al. (2009). Inhibition of glycolysis modulates prednisolone resistance in acute lymphoblastic leukemia cells. Blood 113: 2014–2021.

    CAS  PubMed Central  Google Scholar 

  • Jain VK, Kalia VK, Sharma R, Maharajan V, Menon M . (1985). Effects of 2-deoxy-D-glucose on glycolysis, proliferation kinetics and radiation response of human cancer cells. Int J Radiat Oncol Biol Phys 11: 943–950.

    CAS  Google Scholar 

  • Johnstone RW, Frew AJ, Smyth MJ . (2008). The TRAIL apoptotic pathway in cancer onset, progression and therapy. Nat Rev Cancer 8: 782–798.

    CAS  PubMed Central  Google Scholar 

  • Jones RG, Plas DR, Kubek S, Buzzai M, Mu J, Xu Y et al. (2005). AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol Cell 18: 283–293.

    CAS  Google Scholar 

  • Jones RG, Thompson CB . (2009). Tumor suppressors and cell metabolism: a recipe for cancer growth. Genes Dev 23: 537–548.

    CAS  PubMed Central  Google Scholar 

  • Kalender A, Selvaraj A, Kim SY, Gulati P, Brule S, Viollet B et al. (2010). Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner. Cell Metab 11: 390–401.

    CAS  PubMed Central  Google Scholar 

  • Kalia VK, Jain VK, Otto FJ . (1982). Optimization of cancer therapy: part IV--effects of 2-deoxy-D-glucose on radiation induced chromosomal damage in PHA-stimulated peripheral human leukocytes. Indian J Exp Biol 20: 884–888.

    CAS  Google Scholar 

  • Kang HT, Hwang ES . (2006). 2-Deoxyglucose: an anticancer and antiviral therapeutic, but not any more a low glucose mimetic. Life Sci 78: 1392–1399.

    CAS  Google Scholar 

  • Kaplan O, Navon G, Lyon RC, Faustino PJ, Straka EJ, Cohen JS . (1990). Effects of 2-deoxyglucose on drug-sensitive and drug-resistant human breast cancer cells: toxicity and magnetic resonance spectroscopy studies of metabolism. Cancer Res 50: 544–551.

    CAS  Google Scholar 

  • Kaufman RJ, Scheuner D, Schroder M, Shen X, Lee K, Liu CY et al. (2002). The unfolded protein response in nutrient sensing and differentiation. Nat Rev Mol Cell Biol 3: 411–421.

    CAS  Google Scholar 

  • Kern KA, Norton JA . (1987). Inhibition of established rat fibrosarcoma growth by the glucose antagonist 2-deoxy-D-glucose. Surgery 102: 380–385.

    CAS  Google Scholar 

  • Ko YH, Smith BL, Wang Y, Pomper MG, Rini DA, Torbenson MS et al. (2004). Advanced cancers: eradication in all cases using 3-bromopyruvate therapy to deplete ATP. Biochem Biophys Res Commun 324: 269–275.

    CAS  Google Scholar 

  • Kroemer G, Pouyssegur J . (2008). Tumor cell metabolism: cancer's achilles’ heel. Cancer Cell 13: 472–482.

    CAS  PubMed Central  Google Scholar 

  • Kurtoglu M, Gao N, Shang J, Maher JC, Lehrman MA, Wangpaichitr M et al. (2007). Under normoxia, 2-deoxy-D-glucose elicits cell death in select tumor types not by inhibition of glycolysis but by interfering with N-linked glycosylation. Mol Cancer Ther 6: 3049–3058.

    CAS  Google Scholar 

  • Latz D, Thonke A, Juling-Pohlit L, Pohlit W . (1993). Tumor response to ionizing radiation and combined 2-deoxy-D-glucose application in EATC tumor bearing mice: monitoring of tumor size and microscopic observations. Strahlenther Onkol 169: 405–411.

    CAS  Google Scholar 

  • Lee YJ, Galoforo SS, Berns CM, Tong WP, Kim HR, Corry PM . (1997). Glucose deprivation-induced cytotoxicity in drug resistant human breast carcinoma MCF-7/ADR cells: role of c-myc and bcl-2 in apoptotic cell death. J Cell Sci 110: 681–686.

    CAS  Google Scholar 

  • Liang J, Shao SH, Xu Z-X, Hennessy B, Ding Z, Larrea M et al. (2007). The energy sensing LKB1-AMPK pathway regulates p27(kip1) phosphorylation mediating the decision to enter autophagy or apoptosis. Nat Cell Biol 9: 218–224.

    CAS  Google Scholar 

  • Liu H, Savaraj N, Priebe W, Lampidis TJ . (2002). Hypoxia increases tumor cell sensitivity to glycolytic inhibitors: a strategy for solid tumor therapy (model C). Biochem Pharmacol 64: 1745–1751.

    CAS  Google Scholar 

  • Maher J, Krishan A, Lampidis T . (2004). Greater cell cycle inhibition and cytotoxicity induced by 2-deoxy-D-glucose in tumor cells treated under hypoxic vs aerobic conditions. Cancer Chemother Pharmacol 53: 116–122.

    CAS  Google Scholar 

  • Maschek G, Savaraj N, Priebe W, Braunschweiger P, Hamilton K, Tidmarsh GF et al. (2004). 2-deoxy-D-glucose increases the efficacy of adriamycin and paclitaxel in human osteosarcoma and non-small cell lung cancers in vivo. Cancer Res 64: 31–34.

    CAS  Google Scholar 

  • Maurer U, Charvet C, Wagman AS, Dejardin E, Green DR . (2006). Glycogen synthase kinase-3 regulates mitochondrial outer membrane permeabilization and apoptosis by destabilization of MCL-1. Mol Cell 21: 749–760.

    CAS  PubMed Central  Google Scholar 

  • Michalek RD, Rathmell JC . (2010). The metabolic life and times of a T-cell. Immunol Rev 236: 190–202.

    CAS  PubMed Central  Google Scholar 

  • Munoz-Pinedo C, Robledo G, Lopez-Rivas A . (2004). Thymidylate synthase inhibition triggers glucose-dependent apoptosis in p53-negative leukemic cells. FEBS Lett 570: 205–210.

    CAS  Google Scholar 

  • Munoz-Pinedo C, Ruiz-Ruiz C, Ruiz de Almodovar C, Palacios C, Lopez-Rivas A . (2003). Inhibition of glucose metabolism sensitizes tumor cells to death receptor-triggered apoptosis through enhancement of death-inducing signaling complex formation and apical procaspase-8 processing. J Biol Chem 278: 12759–12768.

    CAS  Google Scholar 

  • Murayama A, Ohmori K, Fujimura A, Minami H, Yasuzawa-Tanaka K, Kuroda T et al. (2008). Epigenetic control of rDNA loci in response to intracellular energy status. Cell 133: 627–639.

    CAS  Google Scholar 

  • Nakano K, Vousden KH . (2001). PUMA, a novel proapoptotic gene, is induced by p53. Mol Cell 7: 683–694.

    CAS  PubMed Central  Google Scholar 

  • Nam SY, Amoscato AA, Lee YJ . (2002). Low glucose-enhanced TRAIL cytotoxicity is mediated through the ceramide-Akt-FLIP pathway. Oncogene 21: 337–346.

    CAS  PubMed Central  Google Scholar 

  • Oudard S, Carpentier A, Banu E, Fauchon F, Celerier D, Poupon MF et al. (2003). Phase II study of lonidamine and diazepam in the treatment of recurrent glioblastoma multiforme. J Neurooncol 63: 81–86.

    Google Scholar 

  • Papaldo P, Lopez M, Cortesi E, Cammilluzzi E, Antimi M, Terzoli E et al. (2003). Addition of either lonidamine or granulocyte colony-stimulating factor does not improve survival in early breast cancer patients treated with high-dose epirubicin and cyclophosphamide. J Clin Oncol 21: 3462–3468.

    CAS  Google Scholar 

  • Pathania D, Millard M, Neamati N . (2009). Opportunities in discovery and delivery of anticancer drugs targeting mitochondria and cancer cell metabolism. Adv Drug Deliv Rev 61: 1250–1275.

    CAS  Google Scholar 

  • Pelicano H, Martin DS, Xu RH, Huang P . (2006). Glycolysis inhibition for anticancer treatment. Oncogene 25: 4633–4646.

    CAS  PubMed Central  Google Scholar 

  • Pradelli LA, Beneteau M, Chauvin C, Jacquin MA, Marchetti S, Munoz-Pinedo C et al. (2010). Glycolysis inhibition sensitizes tumor cells to death receptors-induced apoptosis by AMP kinase activation leading to Mcl-1 block in translation. Oncogene 29: 1641–1652.

    CAS  Google Scholar 

  • Puthalakath H, O'Reilly LA, Gunn P, Lee L, Kelly PN, Huntington ND et al. (2007). ER stress triggers apoptosis by activating BH3-only protein Bim. Cell 129: 1337–1349.

    CAS  PubMed Central  Google Scholar 

  • Raez LE, Langmuir V, Tolba K, Rocha-Lima CM, Papadopoulos K, Kroll S et al. (2007). Responses to the combination of the glycolytic inhibitor 2-deoxy-glucose (2DG) and docetaxel (DC) in patients with lung and head and neck (H/N) carcinomas. J Clin Oncol 25: 14025.

    Google Scholar 

  • Raez LE, Rosenblatt J, Schlesselman J, Langmuir V, Tidmarsh G, Rocha-Lima C et al. (2005). Combining glycolytic inhibitors with chemotherapy: Phase I trial of 2-deoxyglucose and docetaxel in patients with solid tumors. J Clin Oncol, 2005 ASCO Annu Meet Proc 23: 3190.

    Google Scholar 

  • Raffaghello L, Lee C, Safdie FM, Wei M, Madia F, Bianchi G et al. (2008). Starvation-dependent differential stress resistance protects normal but not cancer cells against high-dose chemotherapy. Proc Natl Acad Sci 105: 8215–8220.

    CAS  Google Scholar 

  • Rathmell JC, Fox CJ, Plas DR, Hammerman PS, Cinalli RM, Thompson CB . (2003). Akt-directed glucose metabolism can prevent Bax conformation change and promote growth factor-independent survival. Mol Cell Biol 23: 7315–7328.

    CAS  PubMed Central  Google Scholar 

  • Rosbe KW, Brann TW, Holden SA, Teicher BA, Frei III E . (1989). Effect of lonidamine on the cytotoxicity of four alkylating agents in vitro. Cancer Chemother Pharmacol 25: 32–36.

    CAS  Google Scholar 

  • Shaw RJ, Kosmatka M, Bardeesy N, Hurley RL, Witters LA, DePinho RA et al. (2004). The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci USA 101: 3329–3335.

    CAS  Google Scholar 

  • Shim H, Chun YS, Lewis BC, Dang CV . (1998). A unique glucose-dependent apoptotic pathway induced by c-Myc. Proc Natl Acad Sci USA 95: 1511–1516.

    CAS  Google Scholar 

  • Singh D, Banerji AK, Dwarakanath BS, Tripathi RP, Gupta JP, Mathew TL et al. (2005). Optimizing cancer radiotherapy with 2-deoxy-D-glucose dose escalation studies in patients with glioblastoma multiforme. Strahlentherapie und Onkologie 181: 507–514.

    Google Scholar 

  • Singh SP, Singh S, Jain V . (1990). Effects of 5-bromo-2-deoxyuridine and 2-deoxy-D-glucose on radiation-induced micronuclei in mouse bone marrow. Int J Radiat Biol 58: 791–797.

    CAS  Google Scholar 

  • Suzuki A, Kusakai G, Kishimoto A, Lu J, Ogura T, Esumi H . (2003). ARK5 suppresses the cell death induced by nutrient starvation and death receptors via inhibition of caspase 8 activation, but not by chemotherapeutic agents or UV irradiation. Oncogene 22: 6177–6182.

    CAS  Google Scholar 

  • Swamy RK, Manickam J, Adhikari JS, Dwarakanath BS . (2005). Glycolytic inhibitor, 2-deoxy-D-glucose, does not enhance radiation-induced apoptosis in mouse thymocytes and splenocytes in vitro. Indian J Exp Biol 43: 686–692.

    CAS  Google Scholar 

  • Tasdemir E, Maiuri MC, Galluzzi L, Vitale I, Djavaheri-Mergny M, D'Amelio M et al. (2008). Regulation of autophagy by cytoplasmic p53. Nat Cell Biol 10: 676–687.

    CAS  PubMed Central  Google Scholar 

  • Taylor RC, Cullen SP, Martin SJ . (2008). Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol 9: 231–241.

    CAS  Google Scholar 

  • Teicher BA, Herman TS, Holden SA, Epelbaum R, Liu SD, Frei III E . (1991). Lonidamine as a modulator of alkylating agent activity in vitro and in vivo. Cancer Res 51: 780–784.

    CAS  Google Scholar 

  • Tennant DA, Duran RV, Gottlieb E . (2010). Targeting metabolic transformation for cancer therapy. Nat Rev Cancer 10: 267–277.

    CAS  Google Scholar 

  • Thakkar NS, Potten CS . (1993). Inhibition of doxorubicin-induced apoptosis in vivo by 2-deoxy-D-glucose. Cancer Res 53: 2057–2060.

    CAS  Google Scholar 

  • Tomida A, Yun J, Tsuruo T . (1996). Glucose-regulated stresses induce resistance to camptothecin in human cancer cells. Int J Cancer 68: 391–396.

    CAS  Google Scholar 

  • Tong X, Zhao F, Mancuso A, Gruber JJ, Thompson CB . (2009). The glucose-responsive transcription factor ChREBP contributes to glucose-dependent anabolic synthesis and cell proliferation. Proc Natl Acad Sci 106: 21660–21665.

    CAS  Google Scholar 

  • Uyeda K, Repa JJ . (2006). Carbohydrate response element binding protein, ChREBP, a transcription factor coupling hepatic glucose utilization and lipid synthesis. Cell Metab 4: 107–110.

    CAS  Google Scholar 

  • Vander Heiden MG, Cantley LC, Thompson CB . (2009). Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324: 1029–1033.

    CAS  PubMed Central  Google Scholar 

  • Vander Heiden MG, Plas DR, Rathmell JC, Fox CJ, Harris MH, Thompson CB . (2001). Growth factors can influence cell growth and survival through effects on glucose metabolism. Mol Cell Biol 21: 5899–5912.

    CAS  PubMed Central  Google Scholar 

  • Vousden KH, Ryan KM . (2009). p53 and metabolism. Nat Rev Cancer 9: 691–700.

    CAS  Google Scholar 

  • Wang X, Proud CG . (2009). Nutrient control of TORC1, a cell-cycle regulator. Trends in Cell Biol 19: 260–267.

    CAS  Google Scholar 

  • Wellen KE, Hatzivassiliou G, Sachdeva UM, Bui TV, Cross JR, Thompson CB . (2009). ATP-citrate lyase links cellular metabolism to histone acetylation. Science 324: 1076–1080.

    CAS  PubMed Central  Google Scholar 

  • Wood TE, Dalili S, Simpson CD, Hurren R, Mao X, Saiz FS et al. (2008). A novel inhibitor of glucose uptake sensitizes cells to FAS-induced cell death. Mol Cancer Ther 7: 3546–3555.

    CAS  Google Scholar 

  • Xu R-h, Pelicano H, Zhou Y, Carew JS, Feng L, Bhalla KN et al. (2005). Inhibition of glycolysis in cancer cells: a novel strategy to overcome drug resistance associated with mitochondrial respiratory defect and hypoxia. Cancer Res 65: 613–621.

    CAS  PubMed Central  Google Scholar 

  • Yamada M, Tomida A, Yun J, Cai B, Yoshikawa H, Taketani Y et al. (1999). Cellular sensitization to cisplatin and carboplatin with decreased removal of platinum-DNA adduct by glucose-regulated stress. Cancer Chemother Pharmacol 44: 59–64.

    CAS  Google Scholar 

  • Yang C, Sudderth J, Dang T, Bachoo RG, McDonald JG, DeBerardinis RJ . (2009). Glioblastoma cells require glutamate dehydrogenase to survive impairments of glucose metabolism or Akt signaling. Cancer Res 69: 7986–7993.

    CAS  PubMed Central  Google Scholar 

  • Yi CH, Sogah DK, Boyce M, Degterev A, Christofferson DE, Yuan J . (2007). A genome-wide RNAi screen reveals multiple regulators of caspase activation. J Cell Biol 179: 619–626.

    CAS  PubMed Central  Google Scholar 

  • Youle RJ, Strasser A . (2008). The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 9: 47–59.

    CAS  Google Scholar 

  • Yun J, Tomida A, Nagata K, Tsuruo T . (1995). Glucose-regulated stresses confer resistance to VP-16 in human cancer cells through a decreased expression of DNA topoisomerase II. Oncol Res 7: 583–590.

    CAS  Google Scholar 

  • Yuneva M, Zamboni N, Oefner P, Sachidanandam R, Lazebnik Y . (2007). Deficiency in glutamine but not glucose induces MYC-dependent apoptosis in human cells. J Cell Biol 178: 93–105.

    CAS  PubMed Central  Google Scholar 

  • Zha J, Harada H, Yang E, Jockel J, Korsmeyer SJ . (1996). Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-X(L). Cell 87: 619–628.

    CAS  PubMed Central  Google Scholar 

  • Zhang XD, Deslandes E, Villedieu M, Poulain L, Duval M, Gauduchon P et al. (2006). Effect of 2-deoxy-D-glucose on various malignant cell lines in vitro. Anticancer Res 26: 3561–3566.

    CAS  Google Scholar 

  • Zhao S, Xu W, Jiang W, Yu W, Lin Y, Zhang T et al. (2010). Regulation of cellular metabolism by protein lysine acetylation. Science 327: 1000–1004.

    CAS  PubMed Central  Google Scholar 

  • Zhao Y, Altman BJ, Coloff JL, Herman CE, Jacobs SR, Wieman HL et al. (2007). Glycogen synthase kinase 3alpha and 3beta mediate a glucose-sensitive antiapoptotic signaling pathway to stabilize Mcl-1. Mol Cell Biol 27: 4328–4339.

    CAS  PubMed Central  Google Scholar 

  • Zhao Y, Coloff JL, Ferguson EC, Jacobs SR, Cui K, Rathmell JC . (2008). Glucose metabolism attenuates p53 and Puma-dependent cell death upon growth factor deprivation. J Biol Chem 283: 36344–36353. M803580200.

    CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Ameeta Kelekar for sharing unpublished data and Oscar M. Tirado for critical reading of this manuscript. Research in our group is supported by AICR grant 08-0621 and by grants PI071027 and RTICC RD06/0020 from the Fondo de Investigaciones Sanitarias-ISCIII.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Muñoz-Pinedo.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El Mjiyad, N., Caro-Maldonado, A., Ramírez-Peinado, S. et al. Sugar-free approaches to cancer cell killing. Oncogene 30, 253–264 (2011). https://doi.org/10.1038/onc.2010.466

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.466

Keywords

This article is cited by

Search

Quick links