Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

MicroRNA miR-93 promotes tumor growth and angiogenesis by targeting integrin-β8

Abstract

It has been reported that the miR-106b25 cluster, a paralog of the miR-1792 cluster, possesses oncogenic activities. However, the precise role of each microRNA (miRNA) in the miR-106b25 cluster is not yet known. In this study, we examined the function of miR-93, one of the microRNAs within the miR-106b25 cluster, in angiogenesis and tumor formation. We found that miR-93 enhanced cell survival, promoted sphere formation and augmented tumor growth. Most strikingly, when miR-93-overexpressing U87 cells were co-cultured with endothelial cells, they supported endothelial cell spreading, growth, migration and tube formation. In vivo studies revealed that miR-93-expressing cells induced blood vessel formation, allowing blood vessels to extend to tumor tissues in high densities. Angiogenesis promoted by miR-93 in return facilitated cell survival, resulting in enhanced tumor growth. We further showed that integrin-β8 is a target of miR-93. Higher levels of integrin-β8 are associated with cell death in tumor mass and in human glioblastoma. Silencing of integrin-β8 expression using small interfering RNA promoted cell proliferation, whereas ectopic expression of integrin-β8 decreased cell growth. These findings showed that miR-93 promotes tumor growth and angiogenesis by suppressing, at least in part, integrin-β8 expression. Our results suggest that inhibition of miR-93 function may be a feasible approach to suppress angiogenesis and tumor growth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • Aguda BD, Kim Y, Piper-Hunter MG, Friedman A, Marsh CB. (2008). MicroRNA regulation of a cancer network: consequences of the feedback loops involving miR-17-92, E2F, and Myc. Proc Natl Acad Sci USA 105: 19678–19683.

    Article  CAS  Google Scholar 

  • Bonci D, Coppola V, Musumeci M, Addario A, Giuffrida R, Memeo L et al. (2008). The miR-15a-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nat Med 14: 1271–1277.

    Article  CAS  Google Scholar 

  • Bullitt E, Lin NU, Smith JK, Zeng D, Winer EP, Carey LA et al. (2007). Blood vessel morphologic changes depicted with MR angiography during treatment of brain metastases: a feasibility study. Radiology 245: 824–830.

    Article  Google Scholar 

  • Cambier S, Gline S, Mu D, Collins R, Araya J, Dolganov G et al. (2005). Integrin alpha(v)beta8-mediated activation of transforming growth factor-beta by perivascular astrocytes: an angiogenic control switch. Am J Pathol 166: 1883–1894.

    Article  CAS  Google Scholar 

  • Cambier S, Mu DZ, O'Connell D, Boylen K, Travis W, Liu WH et al. (2000). A role for the integrin alphavbeta8 in the negative regulation of epithelial cell growth. Cancer Res 60: 7084–7093.

    CAS  PubMed  Google Scholar 

  • Dews M, Homayouni A, Yu D, Murphy D, Sevignani C, Wentzel E et al. (2006). Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nat Genet 38: 1060–1065.

    Article  CAS  Google Scholar 

  • Du L, Schageman JJ, Subauste MC, Saber B, Hammond SM, Prudkin L et al. (2009). miR-93, miR-98, and miR-197 regulate expression of tumor suppressor gene FUS1. Mol Cancer Res 7: 1234–1243.

    Article  CAS  Google Scholar 

  • Fjellbirkeland L, Cambier S, Broaddus VC, Hill A, Brunetta P, Dolganov G et al. (2003). Integrin alphavbeta8-mediated activation of transforming growth factor-beta inhibits human airway epithelial proliferation in intact bronchial tissue. Am J Pathol 163: 533–542.

    Article  CAS  Google Scholar 

  • Fontana L, Fiori ME, Albini S, Cifaldi L, Giovinazzi S, Forloni M et al. (2008). Antagomir-17-5p abolishes the growth of therapy-resistant neuroblastoma through p21 and BIM. PLoS ONE 3: e2236.

    Article  Google Scholar 

  • Hagendoorn J, Tong R, Fukumura D, Lin Q, Lobo J, Padera TP et al. (2006). Onset of abnormal blood and lymphatic vessel function and interstitial hypertension in early stages of carcinogenesis. Cancer Res 66: 3360–3364.

    Article  CAS  Google Scholar 

  • Hayashita Y, Osada H, Tatematsu Y, Yamada H, Yanagisawa K, Tomida S et al. (2005). A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res 65: 9628–9632.

    Article  CAS  Google Scholar 

  • He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S et al. (2005). A microRNA polycistron as a potential human oncogene. Nature 435: 828–833.

    Article  CAS  Google Scholar 

  • Hirschhaeuser F, Menne H, Dittfeld C, West J, Mueller-Klieser W, Kunz-Schughart LA . (2010). Multicellular tumor spheroids: an underestimated tool is catching up again. J Biotechnol 148: 3–15.

    Article  CAS  Google Scholar 

  • Koralov SB, Muljo SA, Galler GR, Krek A, Chakraborty T, Kanellopoulou C et al. (2008). Dicer ablation affects antibody diversity and cell survival in the B lymphocyte lineage. Cell 132: 860–874.

    Article  CAS  Google Scholar 

  • Landais S, Landry S, Legault P, Rassart E . (2007). Oncogenic potential of the miR-106-363 cluster and its implication in human T-cell leukemia. Cancer Res 67: 5699–5707.

    Article  CAS  Google Scholar 

  • Lee DY, Deng Z, Wang CH, Yang BB . (2007). MicroRNA-378 promotes cell survival, tumor growth, and angiogenesis by targeting SuFu and Fus-1 expression. Proc Natl Acad Sci USA 104: 20350–20355.

    Article  CAS  Google Scholar 

  • Lee DY, Shatseva T, Jeyapalan Z, Du WW, Deng Z, Yang BB . (2009). A 3′-untranslated region (3′UTR) induces organ adhesion by regulating miR-199a* functions. PLoS ONE 4: e4527.

    Article  Google Scholar 

  • Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J et al. (2003). The nuclear RNase III Drosha initiates microRNA processing. Nature 425: 415–419.

    Article  CAS  Google Scholar 

  • Lee YS, Nakahara K, Pham JW, Kim K, He Z, Sontheimer EJ et al. (2004). Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell 117: 69–81.

    Article  CAS  Google Scholar 

  • Li Y, Tan W, Neo TW, Aung MO, Wasser S, Lim SG et al. (2009). Role of the miR-106b-25 microRNA cluster in hepatocellular carcinoma. Cancer Sci 100: 1234–1242.

    Article  CAS  Google Scholar 

  • Mansfield JH, Harfe BD, Nissen R, Obenauer J, Srineel J, Chaudhuri A et al. (2004). MicroRNA-responsive ‘sensor’ transgenes uncover Hox-like and other developmentally regulated patterns of vertebrate microRNA expression. Nat Genet 36: 1079–1083.

    Article  CAS  Google Scholar 

  • Matsubara H, Takeuchi T, Nishikawa E, Yanagisawa K, Hayashita Y, Ebi H et al. (2007). Apoptosis induction by antisense oligonucleotides against miR-17-5p and miR-20a in lung cancers overexpressing miR-17-92. Oncogene 26: 6099–6105.

    Article  CAS  Google Scholar 

  • Mendell JT . (2008). miRiad roles for the miR-17-92 cluster in development and disease. Cell 133: 217–222.

    Article  CAS  Google Scholar 

  • Novotny GW, Sonne SB, Nielsen JE, Jonstrup SP, Hansen MA, Skakkebaek NE et al. (2007). Translational repression of E2F1 mRNA in carcinoma in situ and normal testis correlates with expression of the miR-17-92 cluster. Cell Death Differ 14: 879–882.

    Article  CAS  Google Scholar 

  • Ota A, Tagawa H, Karnan S, Tsuzuki S, Karpas A, Kira S et al. (2004). Identification and characterization of a novel gene, C13orf25, as a target for 13q31–q32 amplification in malignant lymphoma. Cancer Res 64: 3087–3095.

    Article  CAS  Google Scholar 

  • Petrocca F, Vecchione A, Croce CM . (2008a). Emerging role of miR-106b-25/miR-17-92 clusters in the control of transforming growth factor beta signaling. Cancer Res 68: 8191–8194.

    Article  CAS  Google Scholar 

  • Petrocca F, Visone R, Onelli MR, Shah MH, Nicoloso MS, de Martino I et al. (2008b). E2F1-regulated microRNAs impair TGFbeta-dependent cell-cycle arrest and apoptosis in gastric cancer. Cancer Cell 13: 272–286.

    Article  CAS  Google Scholar 

  • Shan SW, Lee DY, Deng Z, Shatseva T, Jeyapalan Z, Du WW et al. (2009). MicroRNA MiR-17 retards tissue growth and represses fibronectin expression. Nat Cell Biol 11: 1031–1038.

    Article  CAS  Google Scholar 

  • Sharma A, Kumar M, Aich J, Hariharan M, Brahmachari SK, Agrawal A et al. (2009). Posttranscriptional regulation of interleukin-10 expression by hsa-miR-106a. Proc Natl Acad Sci USA 106: 5761–5766.

    Article  CAS  Google Scholar 

  • Sylvestre Y, De Guire V, Querido E, Mukhopadhyay UK, Bourdeau V, Major F et al. (2007). An E2F/miR-20a autoregulatory feedback loop. J Biol Chem 282: 2135–2143.

    Article  CAS  Google Scholar 

  • Takakura S, Mitsutake N, Nakashima M, Namba H, Saenko VA, Rogounovitch TI et al. (2008). Oncogenic role of miR-17-92 cluster in anaplastic thyroid cancer cells. Cancer Sci 99: 1147–1154.

    Article  CAS  Google Scholar 

  • Tomari Y, Zamore PD . (2005). Perspective: machines for RNAi. Curr Biol 15: R61–R64.

    Article  CAS  Google Scholar 

  • Uziel T, Karginov FV, Xie S, Parker JS, Wang YD, Gajjar A et al. (2009). The miR-1792 cluster collaborates with the Sonic Hedgehog pathway in medulloblastoma. Proc Natl Acad Sci USA 106: 2812–2817.

    Article  CAS  Google Scholar 

  • Ventura A, Young AG, Winslow MM, Lintault L, Meissner A, Erkeland SJ et al. (2008). Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell 132: 875–886.

    Article  CAS  Google Scholar 

  • Wang CH, Lee DY, Deng Z, Jeyapalan Z, Lee SC, Kahai S et al. (2008a). MicroRNA miR-328 regulates zonation morphogenesis by targeting CD44 expression. PLoS ONE 3: e2420.

    Article  Google Scholar 

  • Wang Q, Li YC, Wang J, Kong J, Qi Y, Quigg RJ et al. (2008b). miR-17-92 cluster accelerates adipocyte differentiation by negatively regulating tumor-suppressor Rb2/p130. Proc Natl Acad Sci USA 105: 2889–2894.

    Article  CAS  Google Scholar 

  • Xiao C, Srinivasan L, Calado DP, Patterson HC, Zhang B, Wang J et al. (2008). Lymphoproliferative disease and autoimmunity in mice with increased miR-17–92 expression in lymphocytes. Nat Immunol 9: 405–414.

    Article  CAS  Google Scholar 

  • Yeung ML, Yasunaga J, Bennasser Y, Dusetti N, Harris D, Ahmad N et al. (2008). Roles for microRNAs, miR-93 and miR-130b, and tumor protein 53-induced nuclear protein 1 tumor suppressor in cell growth dysregulation by human T-cell lymphotrophic virus 1. Cancer Res 68: 8976–8985.

    Article  CAS  Google Scholar 

  • Zheng PS, Wen J, Ang LC, Sheng W, Viloria-Petit A, Wang Y et al. (2004). Versican/PG-M G3 domain promotes tumor growth and angiogenesis. FASEB J 18: 754–756.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Brain Tumour Tissue Bank (London, Ontario) for glioblastoma slides. This work was supported by a grant from the Heart and Stroke Foundation of Ontario (NA6282) and a grant from Canadian Institutes of Health Research (MOP-102635) to BBY, who is the recipient of a Career Investigator Award (CI5958) from the Heart and Stroke Foundation of Ontario. LF is supported by a Scholarship from China Scholarship Council. CP is supported by a Mid-Career Award from Ontario Women's Health Council/CIHR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B B Yang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fang, L., Deng, Z., Shatseva, T. et al. MicroRNA miR-93 promotes tumor growth and angiogenesis by targeting integrin-β8. Oncogene 30, 806–821 (2011). https://doi.org/10.1038/onc.2010.465

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.465

Keywords

This article is cited by

Search

Quick links