Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

BCR–ABL-mediated upregulation of PRAME is responsible for knocking down TRAIL in CML patients

Abstract

Tumor necrosis factor-related apoptosis-inducing ligand—TNFSF10 (TRAIL), a member of the TNF-α family and a death receptor ligand, was shown to selectively kill tumor cells. Not surprisingly, TRAIL is downregulated in a variety of tumor cells, including BCR–ABL-positive leukemia. Although we know much about the molecular basis of TRAIL-mediated cell killing, the mechanism responsible for TRAIL inhibition in tumors remains elusive because (a) TRAIL can be regulated by retinoic acid (RA); (b) the tumor antigen preferentially expressed antigen of melanoma (PRAME) was shown to inhibit transcription of RA receptor target genes through the polycomb protein, enhancer of zeste homolog 2 (EZH2); and (c) we have found that TRAIL is inversely correlated with BCR–ABL in chronic myeloid leukemia (CML) patients. Thus, we decided to investigate the association of PRAME, EZH2 and TRAIL in BCR–ABL-positive leukemia. Here, we demonstrate that PRAME, but not EZH2, is upregulated in BCR–ABL cells and is associated with the progression of disease in CML patients. There is a positive correlation between PRAME and BCR–ABL and an inverse correlation between PRAME and TRAIL in these patients. Importantly, knocking down PRAME or EZH2 by RNA interference in a BCR–ABL-positive cell line restores TRAIL expression. Moreover, there is an enrichment of EZH2 binding on the promoter region of TRAIL in a CML cell line. This binding is lost after PRAME knockdown. Finally, knocking down PRAME or EZH2, and consequently induction of TRAIL expression, enhances Imatinib sensibility. Taken together, our data reveal a novel regulatory mechanism responsible for lowering TRAIL expression and provide the basis of alternative targets for combined therapeutic strategies for CML.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

References

  • Altucci L, Rossin A, Raffelsberger W, Reitmair A, Chomienne C, Gronemeyer H . (2001). Retinoic acid-induced apoptosis in leukemia cells is mediated by paracrine action of tumor-selective death ligand TRAIL. Nat Med 7: 680–686.

    Article  CAS  Google Scholar 

  • Amarante-Mendes GP, Jascur T, Nishioka WK, Mustelin T, Green DR . (1997). Bcr—Abl-mediated resistance to apoptosis is independent of PI 3-kinase activity. Cell Death Differ 4: 548–554.

    Article  CAS  Google Scholar 

  • Amarante-Mendes GP, Naekyung Kim C, Liu L, Huang Y, Perkins CL, Green DR et al. (1998). Bcr-Abl exerts its antiapoptotic effect against diverse apoptotic stimuli through blockage of mitochondrial release of cytochrome C and activation of caspase-3. Blood 91: 1700–1705.

    CAS  Google Scholar 

  • Bedi A, Zehnbauer BA, Barber JP, Sharkis SJ, Jones RJ . (1994). Inhibition of apoptosis by BCR-ABL in chronic myeloid leukemia. Blood 83: 2038–2044.

    CAS  Google Scholar 

  • Beer DG, Kardia SL, Huang CC, Giordano TJ, Levin AM, Misek DE et al. (2002). Gene-expression profiles predict survival of patients with lung adenocarcinoma. Nat Med 8: 816–824.

    Article  CAS  Google Scholar 

  • Brumatti G, Weinlich R, Chehab CF, Yon M, Amarante-Mendes GP . (2003). Comparison of the anti-apoptotic effects of Bcr-Abl, Bcl-2 and Bcl-x(L) following diverse apoptogenic stimuli. FEBS Lett 541: 57–63.

    Article  CAS  Google Scholar 

  • Bueno-da-Silva AE, Brumatti G, Russo FO, Green DR, Amarante-Mendes GP . (2003). Bcr-Abl-mediated resistance to apoptosis is independent of constant tyrosine-kinase activity. Cell Death Differ 10: 592–598.

    Article  CAS  Google Scholar 

  • Clarke N, Jimenez-Lara AM, Voltz E, Gronemeyer H . (2004). Tumor suppressor IRF-1 mediates retinoid and interferon anticancer signaling to death ligand TRAIL. EMBO J 23: 3051–3060.

    Article  CAS  Google Scholar 

  • Cretney E, Takeda K, Yagita H, Glaccum M, Peschon JJ, Smyth MJ . (2002). Increased susceptibility to tumor initiation and metastasis in TNF-related apoptosis-inducing ligand-deficient mice. J Immunol 168: 1356–1361.

    Article  CAS  Google Scholar 

  • Daniels RA, Turley H, Kimberley FC, Liu XS, Mongkolsapaya J, Ch′En P et al. (2005). Expression of TRAIL and TRAIL receptors in normal and malignant tissues. Cell Res 15: 430–438.

    Article  CAS  Google Scholar 

  • Epping MT, Bernards R . (2006). A causal role for the human tumor antigen preferentially expressed antigen of melanoma in cancer. Cancer Res 66: 10639–10642.

    Article  CAS  Google Scholar 

  • Epping MT, Wang L, Edel MJ, Carlee L, Hernandez M, Bernards R . (2005). The human tumor antigen PRAME is a dominant repressor of retinoic acid receptor signaling. Cell 122: 835–847.

    Article  CAS  Google Scholar 

  • Epping MT, Wang L, Plumb JA, Lieb M, Gronemeyer H, Brown R et al. (2007). A functional genetic screen identifies retinoic acid signaling as a target of histone deacetylase inhibitors. Proc Natl Acad Sci USA 104: 17777–17782.

    Article  CAS  Google Scholar 

  • Haqq C, Nosrati M, Sudilovsky D, Crothers J, Khodabakhsh D, Pulliam BL et al. (2005). The gene expression signatures of melanoma progression. Proc Natl Acad Sci USA 102: 6092–6097.

    Article  CAS  Google Scholar 

  • Hoek KS, Schlegel NC, Brafford P, Sucker A, Ugurel S, Kumar R et al. (2006). Metastatic potential of melanomas defined by specific gene expression profiles with no BRAF signature. Pigment Cell Res 19: 290–302.

    Article  CAS  Google Scholar 

  • Ikeda H, Lethe B, Lehmann F, van Baren N, Baurain JF, de Smet C et al. (1997). Characterization of an antigen that is recognized on a melanoma showing partial HLA loss by CTL expressing an NK inhibitory receptor. Immunity 6: 199–208.

    Article  CAS  Google Scholar 

  • Insinga A, Monestiroli S, Ronzoni S, Gelmetti V, Marchesi F, Viale A et al. (2005). Inhibitors of histone deacetylases induce tumor-selective apoptosis through activation of the death receptor pathway. Nat Med 11: 71–76.

    Article  CAS  Google Scholar 

  • Kikuchi S, Nagai T, Kunitama M, Kirito K, Ozawa K, Komatsu N . (2007). Active FKHRL1 overcomes imatinib resistance in chronic myelogenous leukemia-derived cell lines via the production of tumor necrosis factor-related apoptosis-inducing ligand. Cancer Sci 98: 1949–1958.

    Article  CAS  Google Scholar 

  • Kurzrock R, Gutterman JU, Talpaz M . (1988). The molecular genetics of Philadelphia chromosome-positive leukemias. N Engl J Med 319: 990–998.

    Article  CAS  Google Scholar 

  • McGahon AJ, Brown DG, Martin SJ, Amarante-Mendes GP, Cotter TG, Cohen GM et al. (1997). Downregulation of Bcr-Abl in K562 cells restores susceptibility to apoptosis: characterization of the apoptotic death. Cell Death Differ 4: 95–104.

    Article  CAS  Google Scholar 

  • Melo JV, Barnes DJ . (2007). Chronic myeloid leukaemia as a model of disease evolution in human cancer. Nat Rev Cancer 7: 441–453.

    Article  CAS  Google Scholar 

  • Nebbioso A, Clarke N, Voltz E, Germain E, Ambrosino C, Bontempo P et al. (2005). Tumor-selective action of HDAC inhibitors involves TRAIL induction in acute myeloid leukemia cells. Nat Med 11: 77–84.

    Article  CAS  Google Scholar 

  • Nimmanapalli R, Porosnicu M, Nguyen D, Worthington E, O′Bryan E, Perkins C et al. (2001). Cotreatment with STI-571 enhances tumor necrosis factor alpha-related apoptosis-inducing ligand (TRAIL or apo-2L)-induced apoptosis of Bcr-Abl-positive human acute leukemia cells. Clin Cancer Res 7: 350–357.

    CAS  PubMed  Google Scholar 

  • Oberthuer A, Hero B, Spitz R, Berthold F, Fischer M . (2004). The tumor-associated antigen PRAME is universally expressed in high-stage neuroblastoma and associated with poor outcome. Clin Cancer Res 10: 4307–4313.

    Article  CAS  Google Scholar 

  • Popnikolov NK, Gatalica Z, Adegboyega PA, Norris BA, Pasricha PJ . (2006). Downregulation of TNF-related apoptosis-inducing ligand (TRAIL)/Apo2L in Barrett′s esophagus with dysplasia and adenocarcinoma. Appl Immunohistochem Mol Morphol 14: 161–165.

    Article  CAS  Google Scholar 

  • Proto-Siqueira R, Figueiredo-Pontes LL, Panepucci RA, Garcia AB, Rizzatti EG, Nascimento FM et al. (2006). PRAME is a membrane and cytoplasmic protein aberrantly expressed in chronic lymphocytic leukemia and mantle cell lymphoma. Leuk Res 30: 1333–1339.

    Article  CAS  Google Scholar 

  • Radich JP, Dai H, Mao M, Oehler V, Schelter J, Druker B et al. (2006). Gene expression changes associated with progression and response in chronic myeloid leukemia. Proc Natl Acad Sci USA 103: 2794–2799.

    Article  CAS  Google Scholar 

  • Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D et al. (2004). ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia 6: 1–6.

    Article  CAS  Google Scholar 

  • Richardson AL, Wang ZC, De Nicolo A, Lu X, Brown M, Miron A et al. (2006). X chromosomal abnormalities in basal-like human breast cancer. Cancer Cell 9: 121–132.

    Article  CAS  Google Scholar 

  • Sawyers CL . (1997). Signal transduction pathways involved in BCR-ABL transformation. Baillieres Clin Haematol 10: 223–231.

    Article  CAS  Google Scholar 

  • Sawyers CL . (1999). Chronic myeloid leukemia. N Engl J Med 340: 1330–1340.

    Article  CAS  Google Scholar 

  • Schmaltz C, Alpdogan O, Kappel BJ, Muriglan SJ, Rotolo JA, Ongchin J et al. (2002). T cells require TRAIL for optimal graft-versus-tumor activity. Nat Med 8: 1433–1437.

    Article  CAS  Google Scholar 

  • Sedger LM, Glaccum MB, Schuh JC, Kanaly ST, Williamson E, Kayagaki N et al. (2002). Characterization of the in vivo function of TNF-alpha-related apoptosis-inducing ligand, TRAIL/Apo2L, using TRAIL/Apo2L gene-deficient mice. Eur J Immunol 32: 2246–2254.

    Article  CAS  Google Scholar 

  • Souza-Fagundes EM, Brumatti G, Martins-Filho OA, Correa-Oliveira R, Zani CL, Amarante-Mendes GP . (2003). Myriadenolide, a labdane diterpene isolated from Alomia myriadenia (asteraceae) induces depolarization of mitochondrial membranes and apoptosis associated with activation of caspases-8, -9, and -3 in Jurkat and THP-1 cells. Exp Cell Res 290: 420–426.

    Article  CAS  Google Scholar 

  • Stearman RS, Dwyer-Nield L, Zerbe L, Blaine SA, Chan Z, Bunn Jr PA et al. (2005). Analysis of orthologous gene expression between human pulmonary adenocarcinoma and a carcinogen-induced murine model. Am J Pathol 167: 1763–1775.

    Article  CAS  Google Scholar 

  • Steinbach D, Pfaffendorf N, Wittig S, Gruhn B . (2007). PRAME expression is not associated with down-regulation of retinoic acid signaling in primary acute myeloid leukemia. Cancer Genet Cytogenet 177: 51–54.

    Article  CAS  Google Scholar 

  • Tajeddine N, Louis M, Vermylen C, Gala JL, Tombal B, Gailly P . (2008). Tumor associated antigen PRAME is a marker of favorable prognosis in childhood acute myeloid leukemia patients and modifies the expression of S100A4, Hsp 27, p21, IL-8 and IGFBP-2 in vitro and in vivo. Leuk Lymphoma 49: 1123–1131.

    Article  CAS  Google Scholar 

  • Takeda K, Smyth MJ, Cretney E, Hayakawa Y, Kayagaki N, Yagita H et al. (2002). Critical role for tumor necrosis factor-related apoptosis-inducing ligand in immune surveillance against tumor development. J Exp Med 195: 161–169.

    Article  CAS  Google Scholar 

  • Takeda K, Smyth MJ, Cretney E, Hayakawa Y, Yamaguchi N, Yagita H et al. (2001). Involvement of tumor necrosis factor-related apoptosis-inducing ligand in NK cell-mediated and IFN-gamma-dependent suppression of subcutaneous tumor growth. Cell Immunol 214: 194–200.

    Article  CAS  Google Scholar 

  • Takeda K, Yamaguchi N, Akiba H, Kojima Y, Hayakawa Y, Tanner JE et al. (2004). Induction of tumor-specific T cell immunity by anti-DR5 antibody therapy. J Exp Med 199: 437–448.

    Article  CAS  Google Scholar 

  • Umlauf D, Goto Y, Feil R . (2004). Site-specific analysis of histone methylation and acetylation. Methods Mol Biol 287: 99–120.

    CAS  PubMed  Google Scholar 

  • Uno K, Inukai T, Kayagaki N, Goi K, Sato H, Nemoto A et al. (2003). TNF-related apoptosis-inducing ligand (TRAIL) frequently induces apoptosis in Philadelphia chromosome-positive leukemia cells. Blood 101: 3658–3667.

    Article  CAS  Google Scholar 

  • van′t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M et al. (2002). Gene expression profiling predicts clinical outcome of breast cancer. Nature 415: 530–536.

    Article  Google Scholar 

  • Vigneswaran N, Baucum DC, Wu J, Lou Y, Bouquot J, Muller S et al. (2007). Repression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) but not its receptors during oral cancer progression. BMC Cancer 7: 108.

    Article  Google Scholar 

  • Walczak H, Miller RE, Ariail K, Gliniak B, Griffith TS, Kubin M et al. (1999). Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat Med 5: 157–163.

    Article  CAS  Google Scholar 

  • Wang S, El-Deiry WS . (2003). TRAIL and apoptosis induction by TNF-family death receptors. Oncogene 22: 8628–8633.

    Article  CAS  Google Scholar 

  • Watari K, Tojo A, Nagamura-Inoue T, Nagamura F, Takeshita A, Fukushima T et al. (2000). Identification of a melanoma antigen, PRAME, as a BCR/ABL-inducible gene. FEBS Lett 466: 367–371.

    Article  CAS  Google Scholar 

  • Wiley SR, Schooley K, Smolak PJ, Din WS, Huang CP, Nicholl JK et al. (1995). Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity 3: 673–682.

    Article  CAS  Google Scholar 

  • Yong AS, Keyvanfar K, Eniafe R, Savani BN, Rezvani K, Sloand EM et al. (2008). Hematopoietic stem cells and progenitors of chronic myeloid leukemia express leukemia-associated antigens: implications for the graft-versus-leukemia effect and peptide vaccine-based immunotherapy. Leukemia 22: 1721–1727.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

DDC, JMGL, WOP and AEBBS were recipients of fellowships from the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP—Brazil). This work was supported by grants from FAPESP and from the Brazilian Research Council (CNPq—Brazil). We thank Drs Phillippa Taberlay, Jueng Soo You and Theresa Kelly for their critical review of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G P Amarante-Mendes.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

De Carvalho, D., Binato, R., Pereira, W. et al. BCR–ABL-mediated upregulation of PRAME is responsible for knocking down TRAIL in CML patients. Oncogene 30, 223–233 (2011). https://doi.org/10.1038/onc.2010.409

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.409

Keywords

  • PRAME
  • TRAIL
  • TNFSF10
  • EZH2
  • CML
  • BCR–ABL

This article is cited by

Search

Quick links