Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Hyperactivation of MEK–ERK1/2 signaling and resistance to apoptosis induced by the oncogenic B-RAF inhibitor, PLX4720, in mutant N-RAS melanoma cells

Abstract

Activating mutations in B-RAF and N-RAS occur in 60 and 15% of melanomas, respectively. The most common mutation in B-RAF is V600E, which activates B-RAF and the downstream MEK–ERK1/2 pathway. Thus, B-RAFV600E is a viable therapeutic target. PLX4720 is a selective inhibitor of mutant B-RAF and its analog, PLX4032, is currently undergoing clinical trials in melanoma. However, the effects of PLX4720 across the genotypic spectrum in melanoma remain unclear. Here, we describe that PLX4720 treatment rapidly induces hyperactivation of the MEK–ERK1/2 pathway in mutant N-RAS melanoma cells. Furthermore, we demonstrate that C-RAF is the major RAF isoform involved in this process. Importantly, PLX4720-induced hyperactivation of the MEK–ERK1/2 pathway promotes resistance to apoptosis in both non-invasive and invasive mutant N-RAS melanoma cells but does not enhance cell cycle properties. These findings underscore the need to genotypically stratify melanoma patients before enrollment on a mutant B-RAF inhibitor trial.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Albino AP, Nanus DM, Mentle IR, Cordon-Cardo C, McNutt NS, Bressler J et al. (1989). Analysis of ras oncogenes in malignant melanoma and precursor lesions: correlation of point mutations with differentiation phenotype. Oncogene 4: 1363–1374.

    CAS  Google Scholar 

  • Boisvert-Adamo K, Aplin AE . (2006). B-RAF and PI-3 kinase signaling protect melanoma cells from anoikis. Oncogene 25: 4848–4856.

    Article  CAS  Google Scholar 

  • Boisvert-Adamo K, Aplin AE . (2008). Mutant B-RAF mediates resistance to anoikis via Bad and Bim. Oncogene 27: 3301–3312.

    Article  CAS  Google Scholar 

  • Boisvert-Adamo K, Longmate W, Abel EV, Aplin AE . (2009). Mcl-1 is required for melanoma resistance to anoikis. Mol Cancer Res 7: 549–556.

    Article  CAS  Google Scholar 

  • Conner SR, Scott G, Aplin AE . (2003). Adhesion-dependent activation of the ERK1/2 cascade is by-passed in melanoma cells. J Biol Chem 278: 34548–34554.

    Article  CAS  Google Scholar 

  • Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S et al. (2002). Mutations of the BRAF gene in human cancer. Nature 417: 949–954.

    Article  CAS  Google Scholar 

  • Dumaz N, Hayward R, Martin J, Ogilvie L, Hedley D, Curtin JA et al. (2006). In melanoma, RAS mutations are accompanied by switching signaling from BRAF to CRAF and disrupted cyclic AMP signaling. Cancer Res 66: 9483–9491.

    Article  CAS  Google Scholar 

  • Flaherty K, Puzanov I, Sosman J, Kim K, Ribas A, McArthur G et al. (2009). Phase I study of PLX4032: proof of concept for V600E BRAF mutation as a therapeutic target in human cancer. J Clin Oncol 27: Abstract 9000.

  • Halaban R, Zhang W, Bacchiocchi A, Cheng E, Parisi F, Ariyan S et al. (2010). PLX4032, a selective BRAF V600E kinase inhibitor, activates the ERK pathway and enhances cell migration and proliferation of BRAF WT melanoma cells. Pigment Cell & Melanoma Research 23: 190–200.

    Article  CAS  Google Scholar 

  • Hall-Jackson CA, Eyers PA, Cohen P, Goedert M, Tom Boyle F, Hewitt N et al. (1999). Paradoxical activation of Raf by a novel Raf inhibitor. Chemistry & Biology 6: 559–568.

    Article  CAS  Google Scholar 

  • Hatzivassiliou G, Song K, Yen I, Brandhuber BJ, Anderson DJ, Alvarado R et al. (2010). RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature 464: 431–435.

    Article  CAS  Google Scholar 

  • Heidorn SJ, Milagre C, Whittaker S, Nourry A, Niculescu-Duvas I, Dhomen N et al. (2010). Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell 140: 209–221.

    Article  CAS  Google Scholar 

  • Hunger-Glaser I, Fan RS, Perez-Salazar E, Rozengurt E. (2004). PDGF and FGF induce focal adhesion kinase (FAK) phosphorylation at Ser-910: dissociation from Tyr-397 phosphorylation and requirement for ERK activation. J Cell Physiol 200: 213–222.

    Article  CAS  Google Scholar 

  • Karasarides M, Chiloeches A, Hayward R, Niculescu-Duvaz D, Scanlon I, Friedlos F et al. (2004). B-RAF is a therapeutic target in melanoma. Oncogene 23: 6292–6298.

    Article  CAS  Google Scholar 

  • King AJ, Patrick DR, Batorsky RS, Ho ML, Do HT, Zhang SY et al. (2006). Demonstration of a genetic therapeutic index for tumors expressing oncogenic BRAF by the kinase inhibitor SB-590885. Cancer Res 66: 11100–11105.

    Article  CAS  Google Scholar 

  • Poulikakos PI, Zhang C, Bollag G, Shokat KM, Rosen N . (2010). RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature 464: 427–430.

    Article  CAS  Google Scholar 

  • Pratilas CA, Taylor BS, Ye Q, Viale A, Sander C, Solit DB et al. (2009). V600EBRAF is associated with disabled feedback inhibition of RAF-MEK signaling and elevated transcriptional output of the pathway. Proc Natl Acad Sci USA 106: 4519–4524.

    Article  CAS  Google Scholar 

  • Ritt DA, Monson DM, Specht SI, Morrison DK . (2010). Impact of feedback phosphorylation and Raf heterodimerization on normal and mutant B-Raf signaling. Mol Cell Biol 30: 806–819.

    Article  CAS  Google Scholar 

  • Rushworth LK, Hindley AD, O'Neill E, Kolch W . (2006). Regulation and Role of Raf-1/B-Raf heterodimerization. Mol Cell Biol 26: 2262–2272.

    Article  CAS  Google Scholar 

  • Salerno P, De Falco V, Tamburrino A, Nappi TC, Vecchio G, Schweppe RE et al. (2010). Cytostatic activity of adenosine triphosphate-competitive kinase inhibitors in BRAF mutant thyroid carcinoma cells. J Clin Endocrinol Metab 95: 450–455.

    Article  CAS  Google Scholar 

  • Satyamoorthy K, DeJesus E, Linnenbach AJ, Kraj B, Kornreich DL, Rendle S et al. (1997). Melanoma cell lines from different stages of progression and their biological and molecular analyses. Melanoma Res 7: S35–S42.

    Article  CAS  Google Scholar 

  • Satyamoorthy K, Li G, Gerrero MR, Brose MS, Volpe P, Weber BL et al. (2003). Constitutive mitogen-activated protein kinase activation in melanoma is mediated by both BRAF mutations and autocrine growth factor stimulation. Cancer Res 63: 756–759.

    CAS  PubMed Central  Google Scholar 

  • Solit DB, Garraway LA, Pratilas CA, Sawai A, Getz G, Basso A et al. (2006). BRAF mutation predicts sensitivity to MEK inhibition. Nature 439: 358–362.

    Article  CAS  Google Scholar 

  • Sondak VK, Smalley K . (2009). Targeting mutant BRAF and KIT in metastatic melanoma: ASCO 2009 meeting report. Pigment Cell Melanoma Res 22: 386–387.

    Article  Google Scholar 

  • Tsai J, Lee JT, Wang W, Zhang J, Cho H, Mamo S et al. (2008). Discovery of a selective inhibitor of oncogenic B-Raf kinase with potent antimelanoma activity. Proc Natl Acad Sci USA 105: 3041–3046.

    Article  CAS  Google Scholar 

  • Wan PT, Garnett MJ, Roe SM, Lee S, Niculescu-Duvaz D, Good VM et al. (2004). Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell 116: 855–867.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Gideon Bollag (Plexxikon) for providing PLX4720, Dr Meenhard Herlyn (Wistar Institute) for cell lines and Dr Michele Weiss for comments on the manuscript. This work was supported by National Institutes of Health Grants (R01-GM067893 and R01-CA125103), and Pennsylvania Department of Health (AF0301) to AE Aplin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A E Aplin.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaplan, F., Shao, Y., Mayberry, M. et al. Hyperactivation of MEK–ERK1/2 signaling and resistance to apoptosis induced by the oncogenic B-RAF inhibitor, PLX4720, in mutant N-RAS melanoma cells. Oncogene 30, 366–371 (2011). https://doi.org/10.1038/onc.2010.408

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.408

Keywords

This article is cited by

Search

Quick links