Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Redox-dependent Brca1 transcriptional regulation by an NADH-sensor CtBP1

Abstract

C-terminal binding protein 1 (CtBP1) is a transcriptional co-repressor and metabolic sensory protein, which often represses tumor suppressor genes. Hence, we sought to determine if CtBP1 affects expression of the tumor suppressor Brca1 in head and neck tissue, as downregulation of Brca1 begins at the early stages of head and neck squamous cell carcinomas (HNSCCs). We found that CtBP1 represses Brca1 transcription by binding to the E2F4 site of the Brca1 promoter. Additionally, the recruitment of CtBP1 to the Brca1 promoter is redox-dependent, that is, increased at high NADH levels in hypoxic conditions. Further, immunostaining using a human HNSCC tissue array revealed that nuclear CtBP1 staining began to accumulate in hyperplasic lesions and HNSCCs, this staining correlated with Brca1 downregulation in these lesions. Pharmacological disruption of CtBP1 binding to Brca1 promoter by the antioxidant Tempol, which reduces NADH levels, relieved CtBP1-mediated repression of Brca1, leading to increased DNA repair in HNSCC cells. As tumor cells are generally hypoxic with increased NADH levels, the dynamic control of Brca1 by a ‘metabolic switch’ found in this study not only provides an important link between tumor metabolism and tumor suppressor expression but also suggests a potential chemo preventative or therapeutic strategy for HNSCC by blocking NADH-dependent CtBP1 activity at early stages of HNSCC carcinogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Andres JL, Fan S, Turkel GJ, Wang JA, Twu NF, Yuan RQ et al. (1998). Regulation of BRCA1 and BRCA2 expression in human breast cancer cells by DNA-damaging agents. Oncogene 16: 2229–2241.

    Article  CAS  PubMed  Google Scholar 

  • Atlas E, Stramwasser M, Mueller CR . (2001). A CREB site in the BRCA1 proximal promoter acts as a constitutive transcriptional element. Oncogene 20: 7110–7114.

    Article  CAS  PubMed  Google Scholar 

  • Baker KM, Wei G, Schaffner AE, Ostrowski MC . (2003). Ets-2 and components of mammalian SWI/SNF form a repressor complex that negatively regulates the BRCA1 promoter. J Biol Chem 278: 17876–17884.

    Article  CAS  PubMed  Google Scholar 

  • Barnes CJ, Vadlamudi RK, Mishra SK, Jacobson RH, Li F, Kumar R . (2003). Functional inactivation of a transcriptional corepressor by a signaling kinase. Nat Struct Biol 10: 622–628.

    Article  CAS  PubMed  Google Scholar 

  • Berton TR, Matsumoto T, Page A, Conti CJ, Deng CX, Jorcano JL et al. (2003). Tumor formation in mice with conditional inactivation of Brca1 in epithelial tissues. Oncogene 22: 5415–5426.

    CAS  PubMed  Google Scholar 

  • Bindra RS, Gibson SL, Meng A, Westermark U, Jasin M, Pierce AJ et al. (2005). Hypoxia-induced down-regulation of BRCA1 expression by E2Fs. Cancer Res 65: 11597–11604.

    Article  CAS  PubMed  Google Scholar 

  • Bindra RS, Glazer PM . (2006). Basal repression of BRCA1 by multiple E2Fs and pocket proteins at adjacent E2F sites. Cancer Biol Ther 5: 1400–1407.

    Article  CAS  PubMed  Google Scholar 

  • Bornstein S, White R, Malkoski S, Oka M, Han G, Cleaver T et al. (2009). Smad4 loss in mice causes spontaneous head and neck cancer with increased genomic instability and inflammation. J Clin Invest 119: 3408–3419.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boyd JM, Subramanian T, Schaeper U, La Regina M, Bayley S, Chinnadurai G . (1993). A region in the C-terminus of adenovirus 2/5 E1a protein is required for association with a cellular phosphoprotein and important for the negative modulation of T24-ras mediated transformation, tumorigenesis and metastasis. EMBO J 12: 469–478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chinnadurai G . (2002). CtBP, an unconventional transcriptional corepressor in development and oncogenesis. Mol Cell 9: 213–224.

    Article  CAS  PubMed  Google Scholar 

  • Chinnadurai G . (2009). The transcriptional corepressor CtBP: a foe of multiple tumor suppressors. Cancer Res 69: 731–734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D'Andrea AD, Grompe M . (2003). The Fanconi anaemia/BRCA pathway. Nat Rev Cancer 3: 23–34.

    Article  CAS  PubMed  Google Scholar 

  • De Siervi A, De Luca P, Byun JS, Di LJ, Fufa T, Haggerty CM et al. (2010). Transcriptional autoregulation by BRCA1. Cancer Res 70: 532–542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erker L, Schubert R, Yakushiji H, Barlow C, Larson D, Mitchell JB et al. (2005). Cancer chemoprevention by the antioxidant tempol acts partially via the p53 tumor suppressor. Hum Mol Genet 14: 1699–1708.

    Article  CAS  PubMed  Google Scholar 

  • Fjeld CC, Birdsong WT, Goodman RH . (2003). Differential binding of NAD+ and NADH allows the transcriptional corepressor carboxyl-terminal binding protein to serve as a metabolic sensor. Proc Natl Acad Sci USA 100: 9202–9207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forastiere A, Koch W, Trotti A, Sidransky D . (2001). Head and neck cancer. N Engl J Med 345: 1890–1900.

    Article  CAS  PubMed  Google Scholar 

  • Grooteclaes ML, Frisch SM . (2000). Evidence for a function of CtBP in epithelial gene regulation and anoikis. Oncogene 19: 3823–3828.

    Article  CAS  PubMed  Google Scholar 

  • Hunter KD, Parkinson EK, Harrison PR . (2005). Profiling early head and neck cancer. Nat Rev Cancer 5: 127–135.

    Article  CAS  PubMed  Google Scholar 

  • Iannone A, Tomasi A, Vannini V, Swartz HM . (1990). Metabolism of nitroxide spin labels in subcellular fraction of rat liver. I. reduction by microsomes. Biochim Biophys Acta 1034: 285–289.

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Cho EJ, Kim ST, Youn HD . (2005). CtBP represses p300-mediated transcriptional activation by direct association with its bromodomain. Nat Struct Mol Biol 12: 423–428.

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Youn HD . (2009). C-terminal binding protein maintains mitochondrial activities. Cell Death Differ 16: 584–592.

    Article  CAS  PubMed  Google Scholar 

  • Krishna MC, Grahame DA, Samuni A, Mitchell JB, Russo A . (1992). Oxoammonium cation intermediate in the nitroxide-catalyzed dismutation of superoxide. Proc Natl Acad Sci USA 89: 5537–5541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kutler DI, Auerbach AD, Satagopan J, Giampietro PF, Batish SD, Huvos AG et al. (2003). High incidence of head and neck squamous cell carcinoma in patients with fanconi anemia. Arch Otolaryngol Head Neck Surg 129: 106–112.

    Article  PubMed  Google Scholar 

  • Marsit CJ, Liu M, Nelson HH, Posner M, Suzuki M, Kelsey KT . (2004). Inactivation of the Fanconi anemia/BRCA pathway in lung and oral cancers: implications for treatment and survival. Oncogene 23: 1000–1004.

    Article  CAS  PubMed  Google Scholar 

  • Meloni AR, Smith EJ, Nevins JR . (1999). A mechanism for Rb/p130-mediated transcription repression involving recruitment of the CtBP corepressor. Proc Natl Acad Sci USA 96: 9574–9579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Metz JM, Smith D, Mick R, Lustig R, Mitchell J, Cherakuri M et al. (2004). A phase I study of topical tempol for the prevention of alopecia induced by whole brain radiotherapy. Clin Cancer Res 10: 6411–6417.

    Article  CAS  PubMed  Google Scholar 

  • Mirnezami AH, Campbell SJ, Darley M, Primrose JN, Johnson PW, Blaydes JP . (2003). Hdm2 recruits a hypoxia-sensitive corepressor to negatively regulate p53-dependent transcription. Curr Biol 13: 1234–1239.

    Article  CAS  PubMed  Google Scholar 

  • Mitchell JB, Xavier S, DeLuca AM, Sowers AL, Cook JA, Krishna MC et al. (2003). A low molecular weight antioxidant decreases weight and lowers tumor incidence. Free Radic Biol Med 34: 93–102.

    Article  CAS  PubMed  Google Scholar 

  • Mueller CR, Roskelley CD . (2003). Regulation of BRCA1 expression and its relationship to sporadic breast cancer. Breast Cancer Res 5: 45–52.

    Article  CAS  PubMed  Google Scholar 

  • Schaeper U, Boyd JM, Verma S, Uhlmann E, Subramanian T, Chinnadurai G . (1995). Molecular cloning and characterization of a cellular phosphoprotein that interacts with a conserved C-terminal domain of adenovirus E1A involved in negative modulation of oncogenic transformation. Proc Natl Acad Sci USA 92: 10467–10471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schubert R, Erker L, Barlow C, Yakushiji H, Larson D, Russo A et al. (2004). Cancer chemoprevention by the antioxidant tempol in Atm-deficient mice. Hum Mol Genet 13: 1793–1802.

    Article  CAS  PubMed  Google Scholar 

  • Shen SX, Weaver Z, Xu X, Li C, Weinstein M, Chen L et al. (1998). A targeted disruption of the murine Brca1 gene causes gamma-irradiation hypersensitivity and genetic instability. Oncogene 17: 3115–3124.

    Article  CAS  PubMed  Google Scholar 

  • Sparano A, Quesnelle KM, Kumar MS, Wang Y, Sylvester AJ, Feldman M et al. (2006). Genome-wide profiling of oral squamous cell carcinoma by array-based comparative genomic hybridization. Laryngoscope 116: 735–741.

    Article  CAS  PubMed  Google Scholar 

  • Subramanian T, La Regina M, Chinnadurai G . (1989). Enhanced ras oncogene mediated cell transformation and tumorigenesis by adenovirus 2 mutants lacking the C-terminal region of E1a protein. Oncogene 4: 415–420.

    CAS  PubMed  Google Scholar 

  • Thakur S, Croce CM . (1999). Positive regulation of the BRCA1 promoter. J Biol Chem 274: 8837–8843.

    Article  CAS  PubMed  Google Scholar 

  • Weber F, Xu Y, Zhang L, Patocs A, Shen L, Platzer P et al. (2007). Microenvironmental genomic alterations and clinicopathological behavior in head and neck squamous cell carcinoma. Jama 297: 187–195.

    Article  CAS  PubMed  Google Scholar 

  • Williamson DH, Lund P, Krebs HA . (1967). The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver. Biochem J 103: 514–527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wreesmann VB, Estilo C, Eisele DW, Singh B, Wang SJ . (2007). Downregulation of fanconi anemia genes in sporadic head and neck squamous cell carcinoma. ORL J Otorhinolaryngol Relat Spec 69: 218–225.

    Article  CAS  PubMed  Google Scholar 

  • Wu W, Platoshyn O, Firth AL, Yuan JX . (2007). Hypoxia divergently regulates production of reactive oxygen species in human pulmonary and coronary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 293: L952–959.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Piston DW, Goodman RH . (2002). Regulation of corepressor function by nuclear NADH. Science 295: 1895–1897.

    CAS  PubMed  Google Scholar 

  • Zhang Q, Wang SY, Fleuriel C, Leprince D, Rocheleau JV, Piston DW et al. (2007). Metabolic regulation of SIRT1 transcription via a HIC1:CtBP corepressor complex. Proc Natl Acad Sci USA 104: 829–833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Wang SY, Nottke AC, Rocheleau JV, Piston DW, Goodman RH . (2006). Redox sensor CtBP mediates hypoxia-induced tumor cell migration. Proc Natl Acad Sci USA 103: 9029–9033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Yoshimatsu Y, Hildebrand J, Frisch SM, Goodman RH . (2003). Homeodomain interacting protein kinase 2 promotes apoptosis by downregulating the transcriptional corepressor CtBP. Cell 115: 177–186.

    Article  CAS  PubMed  Google Scholar 

  • Zhang QS, Eaton L, Snyder ER, Houghtaling S, Mitchell JB, Finegold M et al. (2008). Tempol protects against oxidative damage and delays epithelial tumor onset in fanconi anemia mice. Cancer Res 68: 1601–1608.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants from the NIH, R01DE15953 (to X-JW) and R01CA115468 (to QZ). We thank Dr Petra Boukamp for providing the normal human keratinocytes HaCaT cells and Dr James Mitchell for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to X-J Wang or Q Zhang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deng, Y., Liu, J., Han, G. et al. Redox-dependent Brca1 transcriptional regulation by an NADH-sensor CtBP1. Oncogene 29, 6603–6608 (2010). https://doi.org/10.1038/onc.2010.406

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.406

Keywords

This article is cited by

Search

Quick links