Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A novel concept in antiangiogenic and antitumoral therapy: multitarget destabilization of short-lived mRNAs by the zinc finger protein ZFP36L1

Abstract

Angiogenesis inhibitors have shown clinical benefits in patients with advanced cancer, but further therapeutic improvement is needed. We have previously shown that the zinc finger protein 36, C3H type-like 1 (ZFP36L1) enhances vascular endothelial growth factor (VEGF) mRNA decay through its interaction with AU-rich elements within VEGF 3′-untranslated region. In this study, we evaluated the possibility to develop an antiangiogenic and antitumoral strategy using the mRNA-destabilizing activity of ZFP36L1. We engineered a cell-penetrating ZFP36L1, by fusing it to the protein transduction domains (PTDs) TAT derived from HIV, or the polyarginine peptides R7 or R9. PTD-ZFP36L1 fusion proteins were expressed in bacterial cells and affinity-purified to homogeneity. TAT-, R7- and R9-ZFP36L1 were efficiently internalized into living cells and decreased both endogenous VEGF mRNA half-life and VEGF protein levels in vitro. Importantly, a single injection of R9-TIS11b fusion protein into a high-VEGF expressing tissue in vivo (in this study, the mouse adrenal gland) markedly decreased VEGF expression. We further evaluated the effect of R9-ZFP36L1 on tumor growth using Lewis Lung Carcinoma (LL/2) cells implanted subcutaneously into nude mice. Intratumoral injection of R9-ZFP36L1 significantly reduced tumor growth and markedly decreased the expression of multiple angiogenic and inflammatory cytokines, including VEGF, acidic fibroblast growth factor, tumor necrosis factor α, interleukin (IL)-1α and IL-6, with a concomitant obliteration of tumor vascularization. These findings indicate that R9-ZFP36L1 fusion protein may represent a novel antiangiogenic and antitumoral agent, and supports the emerging idea that modulation of mRNA stability represents a promising therapeutic approach to treat cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • Asoh S, Ohta S . (2008). PTD-mediated delivery of anti-cell death proteins/peptides and therapeutic enzymes. Adv Drug Deliv Rev 60: 499–516.

    Article  CAS  Google Scholar 

  • Baou M, Jewell A, Murphy JJ . (2009). TIS11 family proteins and their roles in posttranscriptional gene regulation. J Biomed Biotechnol 2009: 634520.

    Article  Google Scholar 

  • Bell SE, Sanchez MJ, Spasic-Boskovic O, Santalucia T, Gambardella L, Burton GJ et al. (2006). The RNA binding protein Zfp36l1 is required for normal vascularisation and post-transcriptionally regulates VEGF expression. Dev Dyn 235: 3144–3155.

    Article  CAS  Google Scholar 

  • Benjamin D, Moroni C . (2007). mRNA stability and cancer: an emerging link? Expert Opin Biol Ther 7: 1515–1529.

    Article  CAS  Google Scholar 

  • Benjamin D, Schmidlin M, Min L, Gross B, Moroni C . (2006). BRF1 protein turnover and mRNA decay activity are regulated by protein kinase B at the same phosphorylation sites. Mol Cell Biol 26: 9497–9507.

    Article  CAS  Google Scholar 

  • Bergers G, Hanahan D . (2008). Modes of resistance to anti-angiogenic therapy. Nat Rev 8: 592–603.

    Article  CAS  Google Scholar 

  • Bigelow RL, Williams BJ, Carroll JL, Daves LK, Cardelli JA . (2008). TIMP-1 overexpression promotes tumorigenesis of MDA-MB-231 breast cancer cells and alters expression of a subset of cancer promoting genes in vivo distinct from those observed in vitro. Breast Cancer Res Treat 117: 31–44.

    Article  Google Scholar 

  • Cai SR, Xu G, Becker-Hapak M, Ma M, Dowdy SF, McLeod HL . (2006). The kinetics and tissue distribution of protein transduction in mice. Eur J Pharm Sci 27: 311–319.

    Article  CAS  Google Scholar 

  • Cao H . (2004). Expression, purification, and biochemical characterization of the antiinflammatory tristetraprolin: a zinc-dependent mRNA binding protein affected by posttranslational modifications. Biochemistry 43: 13724–13738.

    Article  CAS  Google Scholar 

  • Cao H, Lin R . (2009). Quantitative evaluation of His-tag purification and immunoprecipitation of tristetraprolin and its mutant proteins from transfected human cells. Biotechnol Prog 25: 461–467.

    Article  CAS  Google Scholar 

  • Cao H, Lin R, Ghosh S, Anderson RA, Urban Jr JF . (2008). Production and characterization of ZFP36L1 antiserum against recombinant protein from Escherichia coli. Biotechnol Prog 24: 326–333.

    Article  CAS  Google Scholar 

  • Carballo E, Lai WS, Blackshear PJ . (1998). Feedback inhibition of macrophage tumor necrosis factor-alpha production by tristetraprolin. Science 281: 1001–1005.

    Article  CAS  Google Scholar 

  • Carmeliet P, Ferreira V, Breier G, Pollefeyt S, Kieckens L, Gertsenstein M et al. (1996). Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380: 435–439.

    Article  CAS  Google Scholar 

  • Chauhan A, Tikoo A, Kapur AK, Singh M . (2007). The taming of the cell penetrating domain of the HIV Tat: myths and realities. J Control Release 117: 148–162.

    Article  CAS  Google Scholar 

  • Cherradi N, Lejczak C, Desroches-Castan A, Feige JJ . (2006). Antagonistic functions of tetradecanoyl phorbol acetate-inducible-sequence 11b and HuR in the hormonal regulation of vascular endothelial growth factor messenger ribonucleic acid stability by adrenocorticotropin. Mol Endocrinol 20: 916–930.

    Article  CAS  Google Scholar 

  • Ciais D, Cherradi N, Bailly S, Grenier E, Berra E, Pouyssegur J et al. (2004). Destabilization of vascular endothelial growth factor mRNA by the zinc-finger protein TIS11b. Oncogene 23: 8673–8680.

    Article  CAS  Google Scholar 

  • Dirkx AE, Oude Egbrink MG, Wagstaff J, Griffioen AW . (2006). Monocyte/macrophage infiltration in tumors: modulators of angiogenesis. J Leukoc Biol 80: 1183–1196.

    Article  CAS  Google Scholar 

  • Duchardt F, Fotin-Mleczek M, Schwarz H, Fischer R, Brock R . (2007). A comprehensive model for the cellular uptake of cationic cell-penetrating peptides. Traffic 8: 848–866.

    Article  CAS  Google Scholar 

  • Ellis LM, Hicklin DJ . (2008). VEGF-targeted therapy: mechanisms of anti-tumour activity. Nat Rev 8: 579–591.

    Article  CAS  Google Scholar 

  • Essafi-Benkhadir K, Onesto C, Stebe E, Moroni C, Pages G . (2007). Tristetraprolin inhibits Ras-dependent tumor vascularization by inducing vascular endothelial growth factor mRNA degradation. Mol Biol Cell 18: 4648–4658.

    Article  CAS  Google Scholar 

  • Ferrara N . (2004). Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev 25: 581–611.

    Article  CAS  Google Scholar 

  • Ferrara N, Carver-Moore K, Chen H, Dowd M, Lu L, O'Shea KS et al. (1996). Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380: 439–442.

    Article  CAS  Google Scholar 

  • Fittipaldi A, Giacca M . (2005). Transcellular protein transduction using the Tat protein of HIV-1. Adv Drug Deliv Rev 57: 597–608.

    Article  CAS  Google Scholar 

  • Futaki S, Suzuki T, Ohashi W, Yagami T, Tanaka S, Ueda K et al. (2001). Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J Biol Chem 276: 5836–5840.

    Article  CAS  Google Scholar 

  • Gariano RF, Hu D, Helms J . (2006). Expression of angiogenesis-related genes during retinal development. Gene Expr Patterns 6: 187–192.

    Article  CAS  Google Scholar 

  • Heath VL, Bicknell R . (2009). Anticancer strategies involving the vasculature. Nat Rev Clin Oncol 6: 395–404.

    Article  CAS  Google Scholar 

  • Ho A, Schwarze SR, Mermelstein SJ, Waksman G, Dowdy SF . (2001). Synthetic protein transduction domains: enhanced transduction potential in vitro and in vivo. Cancer Res 61: 474–477.

    CAS  PubMed  Google Scholar 

  • Jalonen U, Nieminen R, Vuolteenaho K, Kankaanranta H, Moilanen E . (2006). Down-regulation of tristetraprolin expression results in enhanced IL-12 and MIP-2 production and reduced MIP-3alpha synthesis in activated macrophages. Mediators Inflamm 2006: 40691.

    Article  Google Scholar 

  • Kuvaja P, Talvensaari-Mattila A, Paakko P, Turpeenniemi-Hujanen T . (2005). The absence of immunoreactivity for tissue inhibitor of metalloproteinase-1 (TIMP-1), but not for TIMP-2, protein is associated with a favorable prognosis in aggressive breast carcinoma. Oncology 68: 196–203.

    Article  CAS  Google Scholar 

  • Lee SK, Kim SB, Kim JS, Moon CH, Han MS, Lee BJ et al. (2005). Butyrate response factor 1 enhances cisplatin sensitivity in human head and neck squamous cell carcinoma cell lines. Int J Cancer 117: 32–40.

    Article  CAS  Google Scholar 

  • Levy AP . (1998). Hypoxic regulation of VEGF mRNA stability by RNA-binding proteins. Trends Cardiovasc Med 8: 246–250.

    Article  CAS  Google Scholar 

  • Li B, Vincent A, Cates J, Brantley-Sieders DM, Polk DB, Young PP . (2009). Low levels of tumor necrosis factor alpha increase tumor growth by inducing an endothelial phenotype of monocytes recruited to the tumor site. Cancer Res 69: 338–348.

    Article  CAS  Google Scholar 

  • Lindsay MA . (2002). Peptide-mediated cell delivery: application in protein target validation. Curr Opin Pharmacol 2: 587–594.

    Article  CAS  Google Scholar 

  • Lykke-Andersen J, Wagner E . (2005). Recruitment and activation of mRNA decay enzymes by two ARE-mediated decay activation domains in the proteins TTP and BRF-1. Genes Dev 19: 351–361.

    Article  CAS  Google Scholar 

  • Nakase I, Niwa M, Takeuchi T, Sonomura K, Kawabata N, Koike Y et al. (2004). Cellular uptake of arginine-rich peptides: roles for macropinocytosis and actin rearrangement. Mol Ther 10: 1011–1022.

    Article  CAS  Google Scholar 

  • Offenberg H, Brunner N, Mansilla F, Orntoft Torben F, Birkenkamp-Demtroder K . (2008). TIMP-1 expression in human colorectal cancer is associated with TGF-B1, LOXL2, INHBA1, TNF-AIP6 and TIMP-2 transcript profiles. Mol Oncol 2: 233–240.

    Article  Google Scholar 

  • Ogilvie RL, Sternjohn JR, Rattenbacher B, Vlasova IA, Williams DA, Hau HH et al. (2009). Tristetraprolin mediates interferon-gamma mRNA decay. J Biol Chem 284: 11216–11223.

    Article  CAS  Google Scholar 

  • Onesto C, Berra E, Grepin R, Pages G . (2004). Poly(A)-binding protein-interacting protein 2, a strong regulator of vascular endothelial growth factor mRNA. J Biol Chem 279: 34217–34226.

    Article  CAS  Google Scholar 

  • Petrelli A, Giordano S . (2008). From single- to multi-target drugs in cancer therapy: when aspecificity becomes an advantage. Curr Med Chem 15: 422–432.

    Article  CAS  Google Scholar 

  • Richard JP, Melikov K, Vives E, Ramos C, Verbeure B, Gait MJ et al. (2003). Cell-penetrating peptides. A reevaluation of the mechanism of cellular uptake. J Biol Chem 278: 585–590.

    Article  CAS  Google Scholar 

  • Saidi A, Hagedorn M, Allain N, Verpelli C, Sala C, Bello L et al. (2009). Combined targeting of interleukin-6 and vascular endothelial growth factor potently inhibits glioma growth and invasiveness. Int J Cancer 125: 1054–1064.

    Article  CAS  Google Scholar 

  • Schwarze SR, Ho A, Vocero-Akbani A, Dowdy SF . (1999). In vivo protein transduction: delivery of a biologically active protein into the mouse. Science 285: 1569–1572.

    Article  CAS  Google Scholar 

  • Snyder EL, Dowdy SF . (2004). Cell penetrating peptides in drug delivery. Pharm Res 21: 389–393.

    Article  CAS  Google Scholar 

  • Stoecklin G, Gross B, Ming XF, Moroni C . (2003). A novel mechanism of tumor suppression by destabilizing AU-rich growth factor mRNA. Oncogene 22: 3554–3561.

    Article  CAS  Google Scholar 

  • Stumpo DJ, Broxmeyer HE, Ward T, Cooper S, Hangoc G, Chung YJ et al. (2009). Targeted disruption of Zfp36l2, encoding a CCCH tandem zinc finger RNA-binding protein, results in defective hematopoiesis. Blood 114: 2401–2410.

    Article  CAS  Google Scholar 

  • Stumpo DJ, Byrd NA, Phillips RS, Ghosh S, Maronpot RR, Castranio T et al. (2004). Chorioallantoic fusion defects and embryonic lethality resulting from disruption of Zfp36L1, a gene encoding a CCCH tandem zinc finger protein of the Tristetraprolin family. Mol Cell Biol 24: 6445–6455.

    Article  CAS  Google Scholar 

  • Thomas M, Keramidas M, Monchaux E, Feige JJ . (2004). Dual hormonal regulation of endocrine tissue mass and vasculature by adrenocorticotropin in the adrenal cortex. Endocrinology 145: 4320–4329.

    Article  CAS  Google Scholar 

  • Tudor C, Marchese FP, Hitti E, Aubareda A, Rawlinson L, Gaestel M et al. (2009). The p38 MAPK pathway inhibits tristetraprolin-directed decay of interleukin-10 and pro-inflammatory mediator mRNAs in murine macrophages. FEBS Lett 583: 1933–1938.

    Article  CAS  Google Scholar 

  • Voronov E, Shouval DS, Krelin Y, Cagnano E, Benharroch D, Iwakura Y et al. (2003). IL-1 is required for tumor invasiveness and angiogenesis. Proc Natl Acad Sci USA 100: 2645–2650.

    Article  CAS  Google Scholar 

  • Wender PA, Mitchell DJ, Pattabiraman K, Pelkey ET, Steinman L, Rothbard JB . (2000). The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: peptoid molecular transporters. Proc Natl Acad Sci USA 97: 13003–13008.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Institut National de la Santé et de la Recherche Médicale (INSERM, U878), the Commissariat à l'Energie Atomique (iRTSV/LAPV), the Institut du Cancer (INCa, Program ‘Emergence des Cancéropoles 2004’), the Cancéropole Rhône-Alpes (CLARA) and the Groupement des Entreprises Françaises pour la Lutte contre le Cancer (GEFLUC)-Comité Dauphiné-Savoie. We also thank the Association pour la Recherche sur le Cancer and the Fondation pour la Recherche Médicale for their financial support to SP. We thank Dr Didier Grunwald (LTS, iRTSV, CEA-Grenoble) for helping us with the laser confocal microscopy platform of our institute. We also thank Dr Maryline Herbet and Dr Michael Thomas (INSERM U878, iRTSV, CEA-Grenoble) for their assistance in the ‘in vivo’ experiments and Dr Jean-Luc Coll (INSERM U883, UJF, Grenoble, France) for his generous gift of the LL/2-luciferase cell line.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N Cherradi.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Planel, S., Salomon, A., Jalinot, P. et al. A novel concept in antiangiogenic and antitumoral therapy: multitarget destabilization of short-lived mRNAs by the zinc finger protein ZFP36L1. Oncogene 29, 5989–6003 (2010). https://doi.org/10.1038/onc.2010.341

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.341

Keywords

This article is cited by

Search

Quick links