
ORIGINAL ARTICLE

Low-dose paclitaxel synergizes with oncolytic adenoviruses via mitotic

slippage and apoptosis in ovarian cancer

CK Ingemarsdotter, SK Baird, CM Connell, D Öberg, G Halldén and IA McNeish

Centre for Molecular Oncology and Imaging, Institute of Cancer, Barts and the London School of Medicine, Queen Mary University
of London, London, UK

The microtubule-stabilizing drug paclitaxel has activity in
relapsed ovarian cancer. dl922-947, an oncolytic adeno-
virus with a 24-bp deletion in E1A CR2, replicates
selectively within and lyses cells with a dysregulated Rb
pathway and has efficacy in ovarian cancer. In the
aggressive A2780CP xenograft, combination treatment
with weekly dl922-947 and paclitaxel has significantly
greater efficacy than either treatment alone and can
produce complete tumor eradication in some animals. We
investigated the mechanisms of paclitaxel’s synergy with
dl922-947 in ovarian cancer. The host-cell microtubule
network is grossly rearranged and stabilized following
adenovirus infection, but paclitaxel does not increase this
significantly. Paclitaxel does not synergize by increasing
infectivity, viral protein expression or virus release.
However, destabilizing the microtubule network with
nocodazole reduces viral exit, revealing a novel micro-
tubule-dependent pathway for non-lytic adenoviral exit.
dl922-947 can override multiple cell cycle checkpoints but
induces cell death by a non-apoptotic mechanism. In
combination, dl922-947 and low-dose paclitaxel induces
aberrant, multipolar mitoses, mitotic slippage and multi-
nucleation, triggering an apoptotic cell death.
Oncogene (2010) 29, 6051–6063; doi:10.1038/onc.2010.335;
published online 23 August 2010
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Introduction

Paclitaxel is a microtubule-stabilizing drug with significant
activity in ovarian cancer (McGuire et al., 1996). Regimes
containing weekly low-dose paclitaxel are highly effective
(Katsumata et al., 2009), even in tumors resistant to conven-
tional three-weekly administration (Markman et al., 2002;
Le et al., 2006). Although paclitaxel can stabilize micro-
tubules at nanomolar concentrations (Jordan et al., 1993),

the cell cycle effects of low-dose exposure are complex
and include mitotic slippage and catastrophic mitotic
exit (Paoletti et al., 1997).

Oncolytic viruses are a new class of anti-cancer
treatment, based upon their ability to replicate selec-
tively within malignant cells. The adenovirus dl922-947
harbors a 24-bp deletion in E1A CR2 and induces cell
death selectively in cells with a defective Rb/G1-S
checkpoint pathway (Heise et al., 2000), a finding
observed in over 90% human cancers (Sherr and
McCormick, 2002). Clinical trials of E1A CR2-deleted
adenoviruses have commenced (http://www.clinicaltrials.
gov; reference NCT00805376). E1A CR2 is important
for binding to pRb, which releases E2F with the
consequent transactivation of genes driving S-phase
entry and cell cycle progression (Felsani et al., 2006). We
have previously shown that dl922-947 has high oncolytic
efficacy in ovarian cancer (Lockley et al., 2006), by a
mechanism independent of classical apoptosis (Baird
et al., 2008), but involving abrogation of multiple cell
cycle checkpoints (Connell et al., 2008).

Clinical trials with the adenovirus dl1520 (Onyx-015)
suggested that combinations with chemotherapy are
effective (Hecht et al., 2003). Paclitaxel can synergize
with oncolytic adenoviruses in various tumor models
(AbouEl Hassan et al., 2006; Cheong et al., 2008).
Suggested mechanisms include increased E1A (AbouEl
Hassan et al., 2006) and cell surface receptor expression
(Seidman et al., 2001). However, the interactions
between adenoviruses and paclitaxel remain unclear and
understanding them will facilitate future trial design.

Adenoviruses induce microtubule alterations after
infection (Staufenbiel et al., 1986), including early
stabilization (Warren et al., 2006). The importance
of the microtubule network for adenovirus entry
and nuclear translocation is well-characterized. After
internalization, the viral capsid interacts with the
motor protein dynein and travels with net movement
toward the nucleus in a microtubule-dependent
manner (Leopold and Crystal, 2007). However, little is
known about microtubules in adenoviral exit. Exit
has been associated with the collapse and cleavage of
the vimentin and cytokeratin networks (Belin and
Boulanger, 1987; White and Cipriani, 1989) and E3
11.6 (Adenovirus Death Protein) may be important in
very late cell lysis (Tollefson et al., 1996). However, virus
can be detected in the supernatant long before cell lysis,
suggesting a pathway of continuous release.
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Here, we have investigated how paclitaxel synergizes
with dl922-947 in ovarian cancer and whether changes in
microtubules influence this. We describe three novel
findings. Firstly, dl922-947 induces an abnormal micro-
tubule network and an increase in microtubule stability
independently of paclitaxel. Secondly, we describe a role
for microtubules in non-lytic virus exit. Thirdly, we
demonstrate that paclitaxel synergizes with dl922-947
by deregulating the activity of mitosis-promoting
factors, leading to mitotic slippage, multinucleation
and apoptosis induction.

Results

The oncolytic adenovirus dl922-947 synergizes with
low-dose paclitaxel in ovarian cancer
dl922-947 has significant activity against IGROV1
xenografts (Lockley et al., 2006), but little against
A2780CP (Flak et al., 2010). To test whether paclitaxel
can augment dl922-947 activity in vivo, we used two
different regimes. In the first, mice bearing intra-
peritoneal (i.p.) A2780CP-luciferase xenografts received
three weekly doses of i.p. dl922-947 and/or 20mg/kg
paclitaxel. Combination treatments were separated by
24 h, with virus injected first. In this highly aggressive
model, mice in the vehicle group developed dissemi-
nated disease within peritoneum and pelvis by day 24.
As before, treatment with either dl922-947 or paclitaxel
alone was ineffective. However, when combined with
paclitaxel, a significant reduction in tumor burden was
seen at day 38 compared with paclitaxel alone (Figure 1a,
left; P¼ 0.046).

A second in vivo regime was tested in which paclitaxel
was fractionated into four daily doses of 5mg/kg
commencing 24 h after dl922-947. As before, tumors in
mice receiving dl922-947 grew exponentially (Figure 1a,
right). Fractionation of the paclitaxel appeared to
improve its activity compared with dl922-947 alone,
although differences in radiance did not reach statistical
significance (P¼ 0.06–0.09). However, a significant
reduction in tumor growth was still observed in the
group receiving dl922-947 plus paclitaxel (P¼ 0.044).
When the last mouse in the paclitaxel group was killed
because of tumor burden (day 56), three mice in the
combination group remained alive with no tumors
detectable by bioluminescence or necropsy. Livers from
experiment 1 were examined (Figure 1c). In the vehicle
group, livers were healthy, whereas those from the
paclitaxel group showed necrosis and hemorrhage. We
observed hepatotoxicity in some dl922-947-treated mice,
as previously (Lockley et al., 2006), with thickening of
the capsule and inflammatory cell infiltration; this was
increased in the combination group.

To model this synergy in vitro, we infected A2780CP
cells and added low-dose (3 nM) paclitaxel up to 72 h
post-infection (p.i.). Paclitaxel increased the efficacy of
dl922-947, with the greatest effect seen when chemother-
apy was added 24 h p.i. (Figure 1d, left). Combination
treatment also led to a marked reduction in EC50 in

IGROV1 cells, using two doses of paclitaxel (Figure 1d,
right), confirming that the effect is not cell-specific. The
synergy was unrelated to primary adenovirus infection
as low-dose paclitaxel had no effect on cell surface CAR
expression in either cell line and did not increase
infectivity by Ad5 vectors, whether given before or after
virus (data not shown).

Use of fluorescent adenovirus to assess replication and
virus exit
We hypothesized that paclitaxel/dl922-947 synergy may
result from alterations to microtubules. To visualize
these, we constructed a derivative of dl922-947, dlCR2-
pIX-dsRed, in which the minor capsid protein pIX is
fused to the fluorescent protein dsRed, as others have
done with green fluorescent protein (GFP) (Le et al.,
2004; Meulenbroek et al., 2004). The modified viral
capsid did not reduce cytotoxic efficacy (Supplementary
Figure 1) and dlCR2-pIX-dsRed could be detected in
proximity to, and within, the nucleus of IGROV1 cells
as early as 1 h post-infection (Figure 2a, left). We also
detected viral particles being released from cells 48 h p.i.,
showing that dlCR2-pIX-dsRed is a useful tool to study
adenovirus intracellular trafficking and exit. We de-
tected a time-dependent increase in emitted fluorescence
from dlCR2-pIX-dsRed-infected cells (Figure 2b), which
correlated closely with intracellular virion titer
(Figure 2c; r2¼ 0.8999). Thus, dlCR2-pIX-dsRed can
also be used for indirect measurement of intracellular
viral replication.

Adenovirus induces rearrangements and stabilization of
the microtubule cytoskeleton in ovarian cancer cells
To investigate host-cell microtubules, A2780CP
cells were analyzed by confocal microscopy 48 h after
dlCR2-pIX-dsRed infection (Figure 3a). Microtubules
were rearranged in a circular formation compared
with the radial organization in uninfected cells.
Strikingly, abnormal microtubule organization was also
seen in IGROV1 cells, with clustered or aggregated
structures (Figure 3b). We used three methods to
investigate the effects of combined virus and paclitaxel.
First, dlCR2-pIX-dsRed-infected cells were stained for
acetylated tubulin, a marker of microtubule stability
(Westermann and Weber, 2003) (Figure 4a). Infected
cells contained large amounts of acetylated tubulin
organized in a ring, whereas acetylated microtubule
fibers were dispersed in the cytoplasm in control cells.
Second, immunoblots also demonstrated increased
tubulin acetylation after adenovirus infection
(Figure 4b and Supplementary Figure 2), but the
addition of low-dose paclitaxel could not stabilize
microtubules further. Finally, in a microtubule poly-
merization assay, the amount of polymerized tubulin
increased from 16 to 34% following dl922-947 (multi-
plicity of infection (MOI) 10) infection. Low-dose
paclitaxel alone increased polymerization (30%) but,
at MOI 10, there was no significant increase in the
presence of both virus and drug (Figure 4c). Modulating
acetylated tubulin levels by HDAC6 inhibition,
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however, did not affect viral efficacy (Supplementary
Figure 3). Taken together, these data suggest that
tubulin is stabilized at later time points after

adenovirus infection but that low-dose paclitaxel does
not synergize with dl922-947 by augmenting this tubulin
stabilization.

Figure 1 dl922-947 synergizes with paclitaxel in vitro and in vivo. (a) Female BALB C nude mice (5 mice/group) were injected i.p. with
3� 106 A2780CP luciferase cells on day 1 followed by paclitaxel (20mg/kg) or dl922-947 (5� 109 particles) treatment on day 5. The
combination group was treated with paclitaxel on day 6. Treatments were repeated weekly for 3 weeks (left). dl922-947 was given
weekly on days 4, 11 and 18. *P¼ 0.046, one-tailed, unpaired Student’s t-test. Low-dose paclitaxel (5mg/kg) was administered i.p.
daily for 4 days starting on days 5, 12 and 19 (right panel). *P¼ 0.044 (one-tailed, unpaired Student’s t-test). (b) Day 24
bioluminescence images from (a) (left). (c) Histopathology of livers from mice in (a). (Left) 4mm liver sections were stained with H&E.
(d) A2780CP cells were infected with dl922-947 and treated with 3 nM paclitaxel up to 72 h post-infection (p.i.; left). Cell survival was
analyzed by MTT assay. Calculated EC50 values are shown (p.f.u./cell). IGROV1 cells were infected as above and treated with 1 or
10 nM paclitaxel 24 hours p.i. (right).
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Microtubules are important for adenovirus exit
We next determined whether paclitaxel and the micro-
tubule network affected viral protein synthesis, replica-
tion and exit from cells. There were only minor changes
in viral protein expression in the presence of three
microtubule-targeting drugs, in particular no increase in
E1A levels (Figure 5a). No change in intracellular viral
replication in the presence of paclitaxel or nocodazole
was seen (Figure 5b). However, there was a significant
decrease in virus release with 300 nM nocodazole:
5.3� 106 p.f.u./ml without nocodazole vs 2.1� 105

p.f.u./ml with nocodazole, P¼ 0.005. Paclitaxel, by
contrast, had no effect on release (Figure 5b). Nocoda-
zole (300 nM) induces a strong G2/M arrest in A2780CP
cells (Supplementary Figure 4). To distinguish whether
adenoviral release depends upon mitotic progression or
functional microtubules, dl922-947-infected cells were
treated with dimethylenastron, an inhibitor of the
mitotic motor protein Eg5, which induces mitotic arrest
without targeting the microtubule network (Gartner
et al., 2005). As before, nocodazole significantly
decreased the amount of virus released without altering

Figure 2 Use of dlCR2-pIX-dsRed to monitor infection, virus replication and exit. (a) Visualization of viral entry and exit. IGROV1
cells were infected with dlCR2-pIX-dsRed on ice for 1 h (0 h p.i. timepoint). Cells were warmed to 37 1C for 1 h, stained with b-tubulin,
DAPI and subjected to confocal analysis (left). Scale bar¼ 10 mm. A2780CP cells were infected with dlCR2-pIX-dsRed (MOI 1) and
analyzed as above 48 h p.i. (right). (b) A2780CP cells were infected with dlCR2-pIX-dsRed (MOI 1). The emitted fluorescence was
measured with a plate reader in 12 h intervals up to 72 h p.i. (c) Scatter-plot analysis of data in B combined with intracellular viral
replication as p.f.u./ml showing a correlation between fluorescence and intracellular viral replication (r2 value¼ 0.8999).
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intracellular replication (Pp0.01). By contrast, di-
methylenastron, which induced a similar degree of cell
cycle arrest as nocodazole (Supplementary Figure 4),
had no effect upon virus release, despite a small but
significant increase in intracellular dl922-947 replication
(1.3� 107 vs 2.4� 107 p.f.u./ml, P¼ 0.016; Figure 5c).
To ensure that the microtubule-targeting drugs were not
altering virus release by affecting cell lysis, a lactate
dehydrogenase release assay was performed. Lactate
dehydrogenase release was low in dl922-947-infected
cells, and the combination of virus and microtubule-
targeting drugs did not increase cell lysis further
(Supplementary Figure 5A). In addition, there was an
inverse correlation between cell lysis and cell viability in
both A2780CP and IGROV1 cells infected with either
dl922-947 or dl309 (Supplementary Figure 5B). This
indicated that virus is released from intact, viable cells

through a microtubule-dependent pathway of non-lytic
virus exit. However, paclitaxel does not utilize this
pathway to synergize with adenovirus. This was
reinforced by RNAi-mediated downregulation of
CLASP proteins, which will reduce microtubule stability
without causing depolymerization, and had minimal
effects on virus release (Supplementary Figure 6).

Low-dose paclitaxel deregulates mitotic progression,
associated with mitotic slippage, multinucleation and
apoptosis
We then investigated cell cycle changes: we have
previously shown that dl922-947 can override multiple
cell cycle checkpoints (Connell et al., 2008), whereas
low-dose paclitaxel causes aberrant mitosis and mitotic
slippage rather than G2/M arrest (Chen and Horwitz,

Figure 3 Adenovirus induces rearrangements of the microtubule network in ovarian cancer cells. (a) A2780CP cells were infected with
dlCR2-pIX-dsRed (MOI 0.1), fixed in ice-cold methanol 48 h p.i., stained with antibodies against b-tubulin and counterstained with
DAPI. Cells were analyzed by confocal microscopy. Scale bar¼ 10mm. (b) IGROV1 cells were infected on ice for 1 h. Unbound
particles were washed off and the infection continued at 37 1C. Cells were fixed 72 h post-infection, stained and analyzed as in (a). Scale
bar¼ 20 mm.
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2002; Demidenko et al., 2008). Cells were first analyzed
by immunofluorescence, revealing a population of
multinucleated cells and cells with multipolar spindles
following treatment with paclitaxel alone or in combi-
nation (Figure 6a). However, there was no significant

change in the mitotic index after dl922-947 infection or
combination treatment, indicating that cells do not
accumulate in mitosis (Supplementary Figure 7).

By flow cytometry, 24 h of low-dose paclitaxel in
A2780CP cells induced an increase in the sub-G1

Figure 4 Microtubules are stable late after adenovirus infection. (a) A2780CP cell were infected with dlCR2-pIX-dsRed (MOI 1).
Cells were fixed in methanol and stained with antibodies against acetylated-tubulin. dlCR2-pIX-dsRed was detected in the dsRed
channel. Scale bar¼ 10mm. (b) IGROV1 cells were infected with dl922-947 (MOI 1 or 10) and treated with paclitaxel or nocodazole
24 h p.i. Protein bands on membranes were quantified on a phosphoimager (right). Ratios of acetylated tubulin/a-tubulin normalized
to control cells are shown. Bars represent mean±s.e.m. (c) Microtubule polymerization assay. Soluble and insoluble microtubule
fractions from dl922-947- and paclitaxel-treated cells were separated by centrifugation and analyzed by immunoblotting (left).
Percentage polymerized tubulin was quantified according to the formula presented (right). Bars represent mean±s.e.m.

Low-dose paclitaxel synergizes with oncolytic adenoviruses
CK Ingemarsdotter et al

6056

Oncogene



population only (0.3% vs 10.4%) with no G2/M arrest.
dl922-947 alone produced a significant reduction in G1
(54.1% vs 42.9%, P¼ 0.008), with a small but significant
increase in 44N population (2.5 vs 10.8%). Combina-
tion treatment resulted in a profile with combined
features: 9.8% sub-G1 and 13.3% 44N (Figure 6b,
upper panel), suggesting aberrant mitotic progression
with apoptosis induction. Time-lapse microscopy of
A2780CP-GFP-tubulin cells showed that paclitaxel,
with or without dl922-947, increased the percentage of
cells dividing with multipolar spindles compared with
dl922-947 or mock infection (Figure 6b, lower panel,
Supplementary Figure 8). Thus, paclitaxel-treated cells
and cells receiving combination treatment slip through

mitosis in the presence of multipolar spindles to generate
multiple and/or multinucleated daughter cells.

We next determined the expression and activity of the
mitosis-promoting complex cyclin B1/cdk1 (Figure 6c,
quantified in Supplementary Figure 9). There was an
increase in cyclin B1 levels 48 h following dl922-947
infection. Surprisingly, cyclin B1 levels, the degradation
of which is normally a prerequisite of mitotic exit (Pines,
2006), stayed high following paclitaxel treatment,
suggesting either that cells can progress through mitosis
in the presence of high levels of cyclin B1 or that
degradation is slow or delayed. Levels of phospho-
histone H1, a marker of cyclin B1/cdk1 activity, rose
after paclitaxel or dl922-947 alone, and increased further

Figure 5 Microtubules are important for non-lytic adenoviral exit. (a) The effect of microtubule-targeting drugs on viral protein
expression. Cells were infected with dl922-947 (MOI 1) and treated with microtubule-targeting drugs 24 h p.i. Whole cell extracts
were resolved on SDS–PAGE gels and immunoblotted with E1A and Ad5 antibodies 48 h p.i (left). Viral protein levels were quantified
on a phosphoimager. Ratios of E1A, hexon or penton to Ku70 normalized to dl922-947-infected cells (MOI 1) are shown (right).
(b) A2780CP cells were infected with dlCR2-pIX-dsRed (MOI 1) and treated as in (a). Intracellular viral replication was assessed
by fluorescence assay 48 h p.i. (left). Supernatants were collected and assayed for released infectious viral particles by TCID50 assay
(right). (c) Intracellular viral replication and viral exit assays. A2780CP cells were infected with dl922-947 (MOI 10) and treated with
nocodazole (300 nM) or dimethylenastron (1mM) 24 h p.i. Intracellular (left) and released (right) virus was titered on JH293 cells as in
(b). *Pp0.05. **Pp0.01.
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when the two were combined. Thus, both dl922-947
and low-dose paclitaxel activate proteins involved in
mitotic progression, confirming our previous finding
that dl922-947 overrides multiple cell cycle check-
points (Connell et al., 2008). This suggests again that

paclitaxel/dl922-947 synergy results from mitotic slippage
and multinucleation.

Aberrant mitosis can trigger an apoptotic response
(Decordier et al., 2008). However, we have shown that
oncolytic adenoviruses do not induce classical apoptosis
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(Baird et al., 2008). To determine the effects of
combination treatment, we analyzed cells for classical
apoptosis markers (Figure 6d). As before, there was no
increase in apoptosis in either A2780CP or IGROV1
following dl922-947 infection, whereas paclitaxel in-
creased all markers in both cell lines. After combined
treatment, high levels of activated caspase-3 and
annexin-V positivity were seen again. Therefore, chemo-
therapy-induced apoptosis is dominant over the virus-
induced death pathway when combining paclitaxel and
dl922-947, although, interestingly, the presence of virus
slightly reduced the effect when compared with pacli-
taxel alone.

Discussion

One strategy to increase oncolytic virus gene therapy
efficacy in clinical trials is to combine it with
chemotherapy. Here, we show that paclitaxel synergizes
with the oncolytic adenovirus dl922-947 both in vitro
and in vivo in the aggressive ovarian cancer xenograft
model A2780CP by a mechanism of mitotic slippage
leading to apoptosis.

We first studied host-cell microtubules because
paclitaxel is a microtubule-stabilizing drug and adeno-
viruses require microtubules for nuclear transport. In
agreement with others (Staufenbiel et al., 1986; Warren
et al., 2006), we demonstrate that adenovirus induces
wholesale microtubule rearrangements and that micro-
tubules are stabilized. We also show, for the first time,
that microtubules are important for viral exit indepen-
dently of cell lysis. However, modulating the stability of
microtubules either by inhibition of HDAC6 or by
downregulating CLASP1/2 does not alter oncolytic
efficacy and viral exit, respectively. Thus, microtubules
are important for non-lytic adenoviral exit, but their
stabilization is not fundamental to the viral lifecycle.
Nocodazole at high concentration has been shown to
induce actin stress fibre formation and cell contraction
(Chang et al., 2008). Thus, the actin cytoskeleton may
also have a role in non-lytic adenoviral exit. Further
work is required to assess the contribution of the actin
network in non-lytic adenoviral exit.

Microtubule stability and increased infectivity also
could not explain the synergy between paclitaxel and

dl922-947. At MOI 10, microtubules are already stable
in infected cells and paclitaxel did not increase this
further. At the nanomolar concentrations required for
these studies, paclitaxel did not cause mitotic arrest but
led to mitotic slippage, multipolar mitosis and multi-
nucleation, resulting in apoptosis, in agreement with
others (Paoletti et al., 1997; Chen and Horwitz, 2002;
Demidenko et al., 2008). The apoptotic effect of
paclitaxel was retained when combined with dl922-947,
although we have previously shown that ovarian cancer
cells do not die through classical apoptosis on exposure
to dl922-947 (Baird et al., 2008). This will have
implications for combination clinical trials in recurrent
cancers, where multiple apoptosis abnormalities have
been described (Reed, 2006).

Similar to others (Murray et al., 1982; Cherubini
et al., 2006), we have shown that adenoviruses can
abrogate multiple cell cycle checkpoints (Connell et al.,
2008). Some adenoviral proteins can affect mitotic
progression and induce apoptosis. Adenoviral E4orf4
interacts with the protein phosphatase 2A, thereby
inactivating the anaphase-promoting complex and
inducing apoptosis (Shtrichman et al., 1999; Kornitzer
et al., 2001). In addition, it was recently shown that
E4orf4 induces cell death by mitotic catastrophe (Li
et al., 2009). Adenovirus E1A and infection with dl1520
have both been shown to increase Mad2 protein levels
(Hernando et al., 2004; Cherubini et al., 2006). E1A can
also induce centrosome amplification (De Luca et al.,
2003) and adenovirus death protein interacts with
MAD2B (Ying and Wold, 2003). Thus, cell cycle
abrogation and mitotic catastrophe may have important
roles in adenoviral-induced cell death. Work exploring
the importance of the 44N DNA population in
adenovirus-infected cells is ongoing.

In our experiments, cyclin B1/cdk1 activity increased
in a time-dependent manner in dl922-947-infected cells,
indicating that cells are able to enter mitosis. The
degradation of cyclin B1 is a prerequisite for mitotic exit
and mitotic slippage (reviewed in Pines, 2006). Cyclin B1
levels were relatively low in paclitaxel-treated cells. At
the same time, there was a small increase in the number
of mitotic cells, suggesting that cells do enter mitosis and
cyclin B1 is possibly degraded as the cells slip through.
To our surprise, cyclin B1 levels were high in the infected
cells in the presence of paclitaxel. This supports our

Figure 6 dl922-947 in combination with low-dose paclitaxel leads to mitotic defects, spindle checkpoint override and apoptosis in
ovarian cancer cells. (a) A2780CP cells were infected with dl922-947 (MOI 10) and treated with 10 nM paclitaxel 24 h later. Cells were
fixed in methanol 48 h p.i. and stained for b-tubulin and DAPI. Scale bar¼ 20mm. Arrows denote micronucleated cells (left). Mitotic
cells were analyzed with a 63� objective and a zoom of 3 (right panel). Scale bar¼ 10mm. The number of micronucleated cells was
counted. Data represent mean±s.d. from triplicate slides. 4200 cells were counted per slide (bottom left). (b) A2780CP cells were
infected with dl922-947 (MOI 10) and treated with paclitaxel 24 h p.i. Cells were fixed and stained with propidium iodide and analyzed
by flow cytometry (top). A2780CP GFP-tubulin cells were grown on poly-D-lysine-coated coverslips and infected with dl922-947
(MOI 10). Cells were treated with 10 nM paclitaxel 24 hours p.i. and analyzed by timelapse microscopy. Images were acquired every
30min for 420 h. The number of mitotic cells dividing with either bipolar or multipolar spindles was quantified. N represents the
number of mitotic cells counted for each condition (bottom). (c) Immunoblot analysis of mitosis-regulating proteins in A2780CP cells.
Cells were infected and treated with paclitaxel as in a. Proteins were extracted up to 72 h p.i. and analyzed for expression of cyclin B1
and phosphorylated histone H1. Nocodazole-treated cells (N) (300 nM) were included as a positive control for cyclin B1/cdk1 activity.
(d) Cells were infected with dl922-947 (V) followed by paclitaxel (P) treatment at 1 and 10 nM 24 h p.i. 48 h p.i., cells were analyzed for
the apoptosis markers Annexin-V, activated caspase-3 and TMRE staining by FACS.
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previous findings that dl922-947 can abrogate multiple
cell cycle checkpoints (Connell et al., 2008). The degrada-
tion of cyclin B1 might be inhibited or delayed in these
cells, possibly mediated by inhibition of the APC by
E4orf4. Further work assessing cyclin B1 degradation in
single cells after infection would answer this question.

In summary, we have shown that paclitaxel synergizes
with oncolytic adenovirus through a mechanism of
mitotic slippage leading to multinucleation and apop-
tosis. Despite its mode of action as a microtubule-
stabilizing drug, paclitaxel’s effects on viruses occur
independently of microtubule stabilization. Given the
importance of aberrant mitosis to the biology of viruses,
our results suggest that drugs that interfere with mitotic
checkpoints, such as aurora kinase inhibitors, may also
be able to augment the efficacy of adenoviruses and
offer the possibilities of new clinical trials.

Materials and methods

Cell lines, viruses, chemicals and siRNA
A2780CP and IGROV1 cells were cultured in Dulbecco’s
modified Eagle’s medium plus penicillin and streptomycin and
10% fetal calf serum (PAA Laboratories, Pasching, Austria).
A2780CP-GFP tubulin single-cell clones were generated follow-
ing transfection with pEGFP-Tub (Clontech Laboratories, Inc.,
Saint-Germain-en-Laye, France), G418 selection, cell sorting and
growth in 96-well plates. dl922-947 is an Ad5 vector deleted in
amino acids 122–129 of E1A-CR2 as well as E3B (Heise et al.,
2000). dl309 is the wild-type control of dl922-947, with full-length
E1A and the same E3B deletion. The chemicals used in this
study were paclitaxel and vincristine (chemotherapy pharmacy,
St Bartholomew’s Hospital, London), Nocodazole (Sigma, Poole,
UK), MG132 (z-Leu-Leu-Leu-al) (Sigma), dimethylenastron
(ALX-270-438-M001, Alexis Biochemicals, Nottingham, UK)
and tubacin (a gift fromDr S Schreiber). CLASP siRNA sequences
were based on published sequences (Mimori-Kiyosue et al., 2005).
CLASP1 siRNA: 50-GCCATTATGCCAACTATCT-30, CLASP2
siRNA: 50-GTTCAGAAAGCCCTTGATG-30. All oligos were
purchased from Dharmacon. ON-TARGETplus Control Pool
(D-001810-10-20, Dharmacon, Epsom, UK) was used as scrambled
control. Cell survival was assessed by MTT assay as before
(Lockley et al., 2006).

Generation of dlCR2-pIX-dsRed
To generate dlCR2-pIX-dsRed, dsRed was fused to the minor
capsid protein pIX separated by a FLAG epitope and
recombined into the dlCR2 plasmid. To allow for recombina-
tion, left- and right-arm homology sequences were generated
flanking the pIX sequence. The left-arm homology sequence
encoding pIX was fused in frame with a FLAG epitope and
monomeric dsRed into the pDsRed-Monomer-N1 plasmid
(Clontech). To generate the left-arm homology sequence,
cDNA encoding the pIX gene between Ad5 nt 3609–4028 was
amplified using wild-type Ad5 as template. Sense and anti-
sense primers were flanked by AgeI enzyme restriction
sequences. A FLAG epitope sequence was incorporated in
the antisense primer. Sense: 50-ACCGGTATACCTGTGTGG

AAGCCTGGA-30. Underlined nucleotides denotes the AgeI
site, and nucleotides in bold correspond to Ad5 nt 2824–2844.
Anti-sense: 50-ACCGGTGCGTACTTCTTCTTCTTGTAGT

CAACCGCATTGGGAGGGGAGGAAGCCTTCA-30. Un-
derlined nucleotides represent AgeI, and nucleotides in bold

the FLAG epitope. Ad5 nt 4000–4028 are shown after the
FLAG epitope sequence. The PCR product was subcloned into
the pCRII-TOPOVector (Invitrogen, Paisley, UK). The pIX
fragment was cloned into pDsRed-Monomer-N1 to generate
the left-arm homology pIX-FLAG-dsRed cassette. A right-arm
homology sequence starting immediately after the pIX stop
codon (nt 4032) was generated using wild-type Ad5 as template
with the following primers. Sense: 50-AAGCTTAACATAAA
TAAAAAACCAGACTCTGTTTGG. Underlined nucleotides
represent HindIII site; nucleotides in bold Ad5 nt 4032–4061.
Anti-sense: 50-AAGCTTTGACCCAGACTACGCTGACG.
Underlined nucleotides represent HindIII; nucleotides in italics
Ad5 nt 5339–5320. The fragment was subcloned into pCRII-
TOPOVector, and cloned into the right arm of the shuttle
plasmid pSuperShuttle. A full description of pSuperShuttle is
found elsewhere (Oberg et al., in preparation). The left-arm
homology pIX-FLAG-dsRed cassette was excised from
pDsRed-Monomer-N1 as a KpnI/NotI fragment and ligated
into the left-arm of pSuperShuttle. pSuperShuttle -pIX-
FLAG-dsRed was then linearized to generate a fragment of
the left and right homology arms. This fragment was
recombined with the dlCR2 plasmid (Leyton et al., 2006) in
BJ5193 Escherichia coli. Positive recombinants were amplified
and the final product transfected into 293 cells for virion
production. Viruses were purified on double CsCl gradients.

Immunofluorescence
Cells were grown on poly-L-lysine (Sigma) coated coverslips
and fixed in 100% methanol for 5min at �20 1C followed by
four washes in phosphate-buffered saline (PBS). Cells were
then blocked in 1.5% bovine serum albumin and PBS-Tween
(0.05% Tween-20 in PBS) for 30min at room temperature.
Cells were washed once in PBS followed by incubation with
primary antibodies for 1 h at room temperature, washed four
times in PBS-Tween and incubated with secondary antibodies
for 1 h at room temperature. Coverslips were washed followed
by staining with 40,6-diamidino-2-phenylindole (DAPI, Invitrogen)
for 1min. Cells were washed twice in PBS and mounted onto
glass slides.

Western blotting
Cells were lysed in 200 ml lysis buffer (150mM NaCl, 50mM

Tris Base, 0.05% SDS, 1% Triton X-100, with Complete
Protease inhibitor cocktail tablets (Roche Diagnostics GmbH),
pH 8) followed by sonication on ice. Whole-cell lysate (20–30mg)
was resolved on SDS-polyacrylamide gels, and transferred to
nitrocellulose membranes by semi-dry transfer (BioRad, Hemel
Hempstead, UK). Unless otherwise stated, membranes were
blocked in 4% non-fat milk in PBS-Tween (0.1%), followed by
overnight incubation with primary antibodies. Proteins were
detected by enhanced chemiluminescence (Amersham). Cyclin
B1 was detected by blocking membranes in 3% bovine serum
albumin-PBS/Tween for 1 h at room temperature. CLASP
proteins were resolved on 6% SDS–PAGE gels and transferred
onto nitrocellulose membranes by wet transfer. Membranes
were blocked in 2% bovine serum albumin and 0.05% PBS-
Tween for 2 h at room temperature followed by incubation
with CLASP antibodies overnight at room temperature.

Histone purification
Cells were resuspended in 0.5% Triton X-100/PBS supple-
mented with protease and phosphatase inhibitors (Complete
Protease inhibitor cocktail tablets and PhosSTOP Phosphatase
Inhibitor Cocktail Tablets (Roche Diagnostics GmbH))
followed by incubation on ice for 10min. Cells were
centrifuged at 2000 r.p.m., for 10min at 4 1C. Pellets were
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resuspended in 0.5 volume 0.5% Triton X-100/PBS and
centrifuged as above. The remaining pellet was resuspended
in 0.1 N HCl and histones extracted overnight at 4 1C. Samples
were centrifuged and supernatant collected. In all, 20mg of
extracted histones was analyzed on SDS–PAGE gel.

Antibodies
The following antibodies were used for immunoblots: CLASP1
(#2292) and CLASP2 (#2358) antibodies were a kind gift from
Dr N. Galjart, (Akhmanova et al., 2001; Mimori-Kiyosue et al.,
2005). Anti-a-tubulin (Abcam, Cambridge, UK), anti-acetylated-
tubulin (Sigma), anti-Adenovirus-2/5 E1A (Santa Cruz, Heidelberg,
Germany), anti-Adenovirus5 (Abcam), anti-Ku70 (Santa Cruz),
anti-cyclin B1 (BD Pharmingen, Oxford, UK), anti-Mad2L1
(Abcam), anti-phospho-histone H1, (Abcam). Primary anti-
bodies for immunofluorescence were anti-b-tubulin (Sigma)
and anti-acetylated-tubulin (Sigma).

Tubulin polymerization assay
Tubulin polymerization assays were based on those previously
described (Giannakakou et al., 1998). Floating cells were
collected by centrifugation and all cells were then lysed in
200ml hypotonic buffer (37 1C in the dark). The buffer was
complemented with Complete Protease inhibitor tablets
(Roche, Welwyn Garden City, UK). Lysate was centrifuged
(14 000 r.p.m., room temperature 10min) and the supernatant
(soluble fraction, S) removed. The insoluble fraction (P) was
resuspended in 200ml hypotonic buffer. Both samples were
incubated on ice, sonicated and mixed with 200 ml 2� SDS
loading buffer. 20ml was separated on SDS–PAGE gels.

Intracellular viral replication assay using dlCR2-pIX-dsRed
These experiments used phenol red medium. 3� 105 cells were
seeded overnight in six-well plates, then washed in serum-free,
phenol red-free medium. Cells were infected with dlCR2-pIX-
dsRed (MOI 1 p.f.u./cell) in 500ml serum-free medium without
phenol red for 3 h and refed with phenol red-free med-
iumþ 2% fetal calf serum. The fluorescence was measured for
1 s using a Victor3 TM1420 multilabel counter (Perkin Elmer,
Buckinghamshire, UK) with 544/15 nm excitation and 620/8nm
emission filters. Fluorescent averages were calculated and
values for untreated cells subtracted from those of infected
cells to reveal the net mean fluorescence. After each scan, cells
were scraped in medium and centrifuged (5min, 1500 r.p.m.),
washed in 0.1M Tris, pH 8, and re-pelleted. Cells were
resuspended in 0.1M Tris pH8 followed by three rounds of
freeze thawing (liquid N2/37 1C). Virus was titered on JH293
cells. For viral exit assays, medium was collected from virus-
infected cells and centrifuged for 5min at 4000 r.p.m. The
supernatant was titered.

Flow cytometry
Cells were fixed in ice-cold 70% ethanol and fixed for 430min
at 4 1C followed by centrifugation at 1500 r.p.m. for 5min.
Pellets were washed in PBS, resuspended in 50ml of 100 mg/ml
of RibonucleaseA, (R-4642) (Sigma) in PBS and incubated at
37 1C for 15min. Cells were then stained with propidium
iodide (Invitrogen, Molecular Probes, Paisley, UK) to a final
concentration of 50mg/ml and analyzed by flow cytometry (BD
FACS Calibur, Becton Dickinson, Oxford, UK).

Microscopy and live-cell imaging
Hematoxylin and eosin slides were analyzed with an Axiophot
microscope (Zeiss, Jena, Germany) coupled to a Nikon Digital
Camera, DXM1200. Images were acquired with � 5 or � 20

Plan-Neofluar objectives (Zeiss). Confocal analysis was
performed with an inverted Zeiss LSM 510 META laser-
scanning microscope with a Plan-Apochromat � 63/1.4 oil
objective. DAPI was detected with a 405-nm laser, Alexa Fluor
488 with a 488-nm laser and dsRed with a 543-nm laser.
Images were acquired in the x, y, z direction, with a line
average of 4 except for Figure 1b and Supplementary Figure 1,
where images were acquired in the x, y direction with a line
average of 8. Z-sections were acquired at optimum interval
levels with sections of 0.36–0.43 mm. Microscope settings were
kept the same for all images in each experiment. Maximal
intensity Z-projections were assembled with the LSM5 Image
browser software.
A2780CP GFP-tubulin cells were grown on poly-D-lysine-

coated glass bottom culture dishes (MatTek Corporation,
Ashland, MA, USA). The medium was changed to Leibovitz’s
L-15 medium without phenol red (21083, GIBCO, Invitrogen)
before imaging. Images were acquired in a closed system at
37 1C with a motorized, epi-fluorescence, inverted Zeiss
Axiovert 200M microscope coupled to a Hamamatsu Orca
12 bit, 1280� 1280 pixel CCD camera. To detect GFP-tubulin,
images were acquired every 30min over 24 h with an LD-A-
plan � 20 objective (Zeiss), exposure time of 1.5 s and gain of
100. Autoexposure was performed for every third image
throughout. Films were assembled with the Simple PCI
software (Digital Pixel) and processed in ImageJ.

In vivo experiments
Experiments were carried out under suitable UK Home Office
personal and project license authority, using 6–8-week-old
female BALB/c nu/nu mice (Harlan, Huntington, UK). In
experiment 1, 3� 106 A2780CP-luciferase cells were injected
i.p. on day 1. Mice received three weekly doses of dl922-947
(5� 109 particles) and/or paclitaxel (20mg/kg) starting at day
5. Combination treatments were separated by 24 h, with virus
injected first. In experiment 2, paclitaxel was fractionated into
four daily doses of 5mg/kg on days 5–8 commencing 24 h after
dl922-947. All mice were assessed daily for weight, general
health and accumulation of ascites and were killed according
to UK Home Office guidelines. At post-mortem, livers were
harvested, fixed in 10% formaldehyde (w/v) and 4 mm sections
stained with hematoxylin and eosin.
Mice were anesthetized (2% isofluorane by inhalation) and

injected i.p. with 125mg/kg D-luciferin (Calliper Life Sciences,
Runcorn, UK). Five minutes later, although still under
anesthetic, they were placed in a light-tight chamber on a
warmed stage (37 1C) and light emission from a defined region
of interest on a ventral surface was imaged on a Xenogen
IVIS 100 Imaging System (Alameda, CA, USA). Data were
analyzed using Living Image software (also Xenogen) and are
presented as mean radiance (photons/s/cm2/sr).

Apoptosis assays
Cells were incubated with 40 nM tetramethylrhodamine ethyl
ester perchlorate (Invitrogen) for 10min, washed in PBS and
resuspended with Annexin V-Alexa 647 conjugate (2.5 mg/ml)
for 15min. DAPI (1 mg/ml) was then added. For caspase
activation analysis, cells were incubated for 60min with 10mM
PhiPhiLux-G1D2 substrate (OncoImmunin Inc, Gaithersburg,
MD, USA) before DAPI addition, then analyzed on a FACS
LSRII (Becton Dickinson) and the data processed using
FlowJo software (Tree Star, Ashland, OR, USA).

Cell lysis assay
Lactate dehydrogenase activity in the medium was measured
with the Cytotoxicity Detection Kit (lactate dehydrogenase)
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(Roche Applied Science). The absorbance values were read at
490 and 630 nm with a Victor3 TM1420 multilabel counter
(Perkin Elmer). The net absorbance was calculated by
subtracting the average reference 630 nm values from the
average 490 nm readings.

Statistics
All statistical analyses were generated with GraphPad
Prism 5.00 (San Diego, CA, USA). All statistical analyses
are unpaired, two-tailed, Student’s t-test unless otherwise
stated.
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