Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

RhoA and RhoC are both required for the ROCK II-dependent promotion of centrosome duplication

Subjects

Abstract

CDK2-cyclin E triggers centrosome duplication, and nucleophosmin (NPM/B23) is found to be one of its targets. NPM/B23 phosphorylated by CDK2-cyclin E acquires a high binding affinity to Rho-associated kinase (ROCK II), and physically associates with ROCK II. The NPM/B23-binding results in superactivation of ROCK II, which is a critical event for initiation of centrosome duplication. The activation of ROCK II also requires the binding of Rho small GTPase to the auto-inhibitory region; hence the availability of the active Rho protein is an important aspect of the centrosomally localized ROCK II to properly initiate centrosome duplication. There are three isoforms of Rho (RhoA, B and C), all of which are capable of binding to and priming the activation of ROCK II. Here, we investigated which Rho isoform(s) are involved in the activation of ROCK II in respect to the initiation of centrosome duplication. We found that both RhoA and RhoC, but not RhoB, were required for initiation of centrosome duplication, and overactivation of RhoA, as well as RhoC, but not RhoB, promoted centrosome duplication and centrosome amplification.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Aoki T, Ueda S, Kataoka T, Satoh T . (2009). Regulation of mitotic spindle formation by the RhoA guanine nucleotide exchange factor ARHGEF10. BMC Cell Biol 28: 56.

    Article  Google Scholar 

  • Balczon R, Bao L, Zimmer WE, Brown K, Zinkowski RP, Brinkley BR . (1995). Dissociation of centrosome replication events from cycles of DNA synthesis and mitotic division in hydroxyurea-arrested Chinese hamster ovary cells. J Cell Biol 130: 105–115.

    Article  CAS  PubMed  Google Scholar 

  • Bishop AL, Hall A . (2000). Rho GTPases and their effector proteins. Biochem J 348: 241–255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Canguilhem B, Pradines A, Baudouin C, Boby C, Lajoie-Mazenc I, Charveron M et al. (2005). RhoB protects human keratinocytes from UVB-induced apoptosis through epidermal growth factor receptor signaling. J Biol Chem 280: 43257–43263.

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Indjeian VB, McManus M, Wang L, Dynlacht BD . (2002). CP110, a cell cycle-dependent CDK substrate, regulates centrosome duplication in human cells. Dev Cell 3: 339–350.

    Article  CAS  PubMed  Google Scholar 

  • Chevrier V, Piel M, Collomb N, Saoudi Y, Frank R, Paintrand M et al. (2002). The Rho-associated protein kinase p160ROCK is required for centrosome positioning. J Cell Biol 157: 807–817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D′Assoro AB, Lingle WL, Salisbury JL . (2002). Centrosome amplification and the development of cancer. Oncogene 40: 6146–6153.

    Article  Google Scholar 

  • Doxsey S . (2001). Re-evaluating centrosome function. Nature Rev Mol Cell Biol 2: 688–698.

    Article  CAS  Google Scholar 

  • Ellenbroek SI, Collard JG . (2007). Rho GTPases: functions and association with cancer. Clin Exp Metastasis 24: 657–672.

    Article  CAS  PubMed  Google Scholar 

  • Fisk HA, Winey M . (2001). The mouse Mps1p-like kinase regulates centrosome duplication. Cell 106: 95–104.

    Article  CAS  PubMed  Google Scholar 

  • Fukasawa K . (2005). Centrosome amplification, chromosome instability and cancer development. Cancer Lett 230: 6–19.

    Article  CAS  PubMed  Google Scholar 

  • Fukasawa K . (2007). Oncogenes and tumour suppressors take on centrosomes. Nat Rev Cancer 7: 911–924.

    Article  CAS  PubMed  Google Scholar 

  • Gómez del Pulgar T, Benitah SA, Valerón PF, Espina C, Lacal JC . (2005). Rho GTPase expression in tumourigenesis: evidence for a significant link. Bioessays 27: 602–613.

    Article  PubMed  Google Scholar 

  • Hinchcliffe EH, Li C, Thompson EA, Maller JL, Sluder G . (1999). Requirement of Cdk2-cyclin E activity for repeated centrosome reproduction in Xenopus egg extracts. Science 283: 851–854.

    Article  CAS  PubMed  Google Scholar 

  • Hinchcliffe EH, Sluder G . (2002). Two for two: Cdk2 and its role in centrosome doubling. Oncogene 21: 6154–6160.

    Article  CAS  PubMed  Google Scholar 

  • Ho TT, Merajver SD, Lapière CM, Nusgens BV, Deroanne CF . (2008). RhoA-GDP regulates RhoB protein stability. Potential involvement of RhoGDIalpha. J Biol Chem 283: 21588–21598.

    Article  CAS  PubMed  Google Scholar 

  • Kabuyama Y, Litman ES, Templeton PD, Metzner SI, Witze ES, Argast GM et al. (2009). A mediator of Rho-dependent invasion moonlights as a methionine salvage enzyme. Mol Cell Proteomics 8: 2308–2320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kjoller L, Hall A . (1999). Signalling to Rho GTPases. Exp Cell Res 253: 166–179.

    Article  CAS  PubMed  Google Scholar 

  • Lacey KR, Jackson PK, Stearns T . (1999). Cyclin-dependent kinase control of centrosome duplication. Proc Natl Acad Sci USA 96: 2817–2822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma Z, Kanai M, Kawamura K, Kaibuchi K, Ye K, Fukasawa K . (2006). Interaction between ROCK II and nucleophosmin/B23 in the regulation of centrosome duplication. Mol Cell Biol 26: 9016–9034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsui T, Amano M, Yamamoto T, Chihara K, Nakafuku M, Ito M et al. (1996). Rho-associated kinase, a novel serine/threonine kinase, as a putative target for small GTP binding protein Rho. EMBO J 15: 2208–2216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsumoto Y, Hayashi K, Nishida E . (1999). Cyclin-dependent kinase 2 (Cdk2) is required for centrosome duplication in mammalian cells. Curr Biol 9: 429–432.

    Article  CAS  PubMed  Google Scholar 

  • Milia J, Teyssier F, Dalenc F, Ader I, Delmas C, Pradines A et al. (2005). Farnesylated RhoB inhibits radiation-induced mitotic cell death and controls radiation-induced centrosome overduplication. Cell Death Differ 12: 492–501.

    Article  CAS  PubMed  Google Scholar 

  • Morgan DO . (1997). Cyclin-dependent kinases: engines, clocks, and microprocessors. Annu Rev Cell Dev Biol 13: 261–291.

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa O, Fujisawa K, Ishizaki T, Saito Y, Nakao K, Narumiya S . (1996). ROCK-I and ROCK-II, two isoforms of Rho-associated coiled-coil forming protein serine/threonine kinase in mice. FEBS Lett 392: 189–193.

    Article  CAS  PubMed  Google Scholar 

  • Okuda M, Horn HF, Tarapore P, Tokuyama Y, Smulian AG, Chan PK et al. (2000). Nucleophosmin/B23 is a target of CDK2/cyclin E in centrosome duplication. Cell 103: 127–140.

    Article  CAS  PubMed  Google Scholar 

  • Reed SI . (1997). Control of the G1/S transition. Cancer Surv 29: 7–23.

    CAS  PubMed  Google Scholar 

  • Sahai E, Alberts AS, Treisman R . (1998). RhoA effector mutants reveal distinct effector pathways for cytoskeletal reorganization, SRF activation and transformation. EMBO J 17: 1350–1361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salisbury JL . (2007). A mechanistic view on the evolutionary origin for centrin-based control of centriole duplication. J Cell Physiol 213: 420–428.

    Article  CAS  PubMed  Google Scholar 

  • Shinomiya N, Gao CF, Xie Q, Gustafson M, Waters DJ, Zhang YW et al. (2004). RNA interference reveals that ligand-independent met activity is required for tumor cell signaling and survival. Cancer Res 64: 7962–7970.

    Article  CAS  PubMed  Google Scholar 

  • Simpson KJ, Dugan AS, Mercurio AM . (2004). Functional analysis of the contribution of RhoA and RhoC GTPases to invasive breast carcinoma. Cancer Res 64: 8694–8701.

    Article  CAS  PubMed  Google Scholar 

  • Tarapore P, Horn HF, Tokuyama Y, Fukasawa K . (2001). Direct regulation of the centrosome duplication cycle by the p53-p21Waf1/Cip1 pathway. Oncogene 20: 3173–3184.

    Article  CAS  PubMed  Google Scholar 

  • Tarapore P, Okuda M, Fukasawa K . (2002). A mammalian in vitro centriole duplication system: evidence for involvement of CDK2/cyclin E and nucleophosmin/B23 in centrosome duplication. Cell Cycle 1: 75–81.

    Article  CAS  PubMed  Google Scholar 

  • Tokuyama Y, Horn HF, Kawamura K, Tarapore P, Fukasawa K . (2001). Specific phosphorylation of nucleophosmin on Thr(199) by cyclin-dependent kinase 2-cyclin E and its role in centrosome duplication. J Biol Chem 276: 21529–21537.

    Article  CAS  PubMed  Google Scholar 

  • Vega FM, Ridley AJ . (2008). RhoGTPases in cancer cell biology. FEBS lett 582: 2093–2101.

    Article  CAS  PubMed  Google Scholar 

  • Wang HR, Zhang Y, Ozdamar B, Ogunjimi AA, Alexandrova E, Thomsen GH et al. (2003a). Regulation of cell polarity and protrusion formation by targeting RhoA for degradation. Science 302: 1775–1779.

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Yang L, Luo Y, Zheng Y . (2003b). A novel strategy for specifically down-regulating individual Rho GTPase activity in tumor cells. J Biol Chem 278: 44617–44625.

    Article  CAS  PubMed  Google Scholar 

  • Wheeler AP, Ridley AJ . (2004). Why three Rho proteins? RhoA, RhoB, RhoC, and cell motility. Exp Cell Res 301: 43–49.

    Article  CAS  PubMed  Google Scholar 

  • Wolf A, Keil R, Götzl O, Mun A, Schwarze K, Lederer M et al. (2006). The armadillo protein p0071 regulates Rho signaling during cytokinesis. Nat Cell Biol 8: 1432–1440.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M Rowland and B Nepon-Sixt for technical assistance and core staff at the analytical microscopy core facility and molecular biology core facility in H Lee Moffitt Cancer Center. We also thank Dr Sebti for providing RhoB cDNA. This study is supported by the National Institute of Health (CA90522 to KF) and James & Esther King Biomedical Research Program (09KN-05–23139 to MK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Fukasawa.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanai, M., Crowe, M., Zheng, Y. et al. RhoA and RhoC are both required for the ROCK II-dependent promotion of centrosome duplication. Oncogene 29, 6040–6050 (2010). https://doi.org/10.1038/onc.2010.328

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.328

Keywords

This article is cited by

Search

Quick links