Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Phosphorylated p68 RNA helicase activates snail1 transcription by promoting HDAC1 dissociation from the snail1 promoter

Abstract

The nuclear p68 RNA helicase is a prototypical member of the DEAD-box family of RNA helicases. p68 RNA helicase has been implicated in cell proliferation and early organ development and maturation. However, the functional role of p68 RNA helicase in these biological processes at the molecular level is not well understood. We previously reported that tyrosine phosphorylation of p68 RNA helicase mediates the effects of platelet-derived growth factor (PDGF) in induction of epithelial mesenchymal transition by promoting β-catenin nuclear translocation. Here, we report that phosphorylation of p68 RNA helicase at Y593 upregulates transcription of the Snail1 gene. The phosphorylated p68 activates transcription of the Snail1 gene by promoting histone deacetylase (HDAC)1 dissociation from the Snail1 promoter. Our results showed that p68 interacted with the nuclear remodeling and deacetylation complex MBD3:Mi-2/NuRD. Thus, our data suggested that a DEAD-box RNA unwindase could potentially regulate gene expression by functioning as a protein ‘displacer’ to modulate protein–protein interactions at the chromatin-remodeling complex.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Barbera MJ, Puig I, Dominguez D, Julien-Grille S, Guaita-Esteruelas S, Peiro S et al. (2004). Regulation of Snail transcription during epithelial to mesenchymal transition of tumor cells. Oncogene 23: 7345–7354.

    Article  CAS  PubMed  Google Scholar 

  • Barrallo-Gimeno A, Nieto MA . (2005). The Snail genes as inducers of cell movement and survival: implications in development and cancer. Development 132: 3151–3161.

    Article  CAS  PubMed  Google Scholar 

  • Bates GJ, Nicol SM, Wilson BJ, Jacobs AM, Bourdon JC, Wardrop J et al. (2005). The DEAD box protein p68: a novel transcriptional coactivator of the p53 tumour suppressor. EmboJ 24: 543–553.

    Article  CAS  Google Scholar 

  • Bolos V, Peinado H, Perez-Moreno MA, Fraga MF, Esteller M, Cano A . (2003). The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: a comparison with Snail and E47 repressors. J Cell Sci 116: 499–511.

    Article  CAS  PubMed  Google Scholar 

  • Bowen NJ, Fujita N, Kajita M, Wade PA . (2004). Mi-2/NuRD: multiple complexes for many purposes. Biochim Biophys Acta 1677: 52–57.

    Article  CAS  PubMed  Google Scholar 

  • Bryant DM, Stow JL . (2004). The ins and outs of E-cadherin trafficking. Trends Cell Biol 14: 427–434.

    Article  CAS  PubMed  Google Scholar 

  • Buszczak M, Spradling AC . (2006). The Drosophila p68 RNA helicase regulates transcriptional deactivation by promoting RNA release from chromatin. Genes Dev 20: 977–989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Causevic M, Hislop RG, Kernohan NM, Carey FA, Kay RA, Steele RJ et al. (2001). Overexpression and poly-ubiquitylation of the DEAD-box RNA helicase p68 in colorectal tumours. Oncogene 20: 7734–7743.

    Article  CAS  PubMed  Google Scholar 

  • Ciruna B, Rossant J . (2001). FGF signaling regulates mesoderm cell fate specification and morphogenetic movement at the primitive streak. Dev Cell 1: 37–49.

    Article  CAS  PubMed  Google Scholar 

  • Crawford L, Leppard K, Lane D, Harlow E . (1982). Cellular proteins reactive with monoclonal antibodies directed against simian virus 40 T-antigen. J Virol 42: 612–620.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Davis MA, Ireton RC, Reynolds AB . (2003). A core function for p120-catenin in cadherin turnover. J Cell Biol 163: 525–534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Craene B, van Roy F, Berx G . (2005). Unraveling signalling cascades for the Snail family of transcription factors. Cell Signal 17: 535–547.

    Article  CAS  PubMed  Google Scholar 

  • Dubey P, Hendrickson RC, Meredith SC, Siegel CT, Shabanowitz J, Skipper JC et al. (1997). The immunodominant antigen of an ultraviolet-induced regressor tumor is generated by a somatic point mutation in the DEAD box helicase p68. J Exp Med 185: 695–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Endoh H, Maruyama K, Masuhiro Y, Kobayashi Y, Goto M, Tai H et al. (1999). Purification and identification of p68 RNA helicase acting as a transcriptional coactivator specific for the activation function 1 of human estrogen receptor alpha. Mol Cell Biol 19: 5363–5372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fearon ER . (2003). Connecting estrogen receptor function, transcriptional repression, and E-cadherin expression in breast cancer. Cancer Cell 3: 307–310.

    Article  CAS  PubMed  Google Scholar 

  • Ford MJ, Anton IA, Lane DP . (1988). Nuclear protein with sequence homology to translation initiation factor eIF-4A. Nature 332: 736–738.

    Article  CAS  PubMed  Google Scholar 

  • Forsberg EC, Bresnick EH . (2001). Histone acetylation beyond promoters: long-range acetylation patterns in the chromatin world. Bioessays 23: 820–830.

    Article  CAS  PubMed  Google Scholar 

  • Fujita N, Jaye DL, Kajita M, Geigerman C, Moreno CS, Wade PA . (2003). MTA3, a Mi-2/NuRD complex subunit, regulates an invasive growth pathway in breast cancer. Cell 113: 207–219.

    Article  CAS  PubMed  Google Scholar 

  • Hirling H, Scheffner M, Restle T, Stahl H . (1989). RNA helicase activity associated with the human p68 protein. Nature 339: 562–564.

    Article  CAS  PubMed  Google Scholar 

  • Iggo RD, Lane DP . (1989). Nuclear protein p68 is an RNA-dependent ATPase. Embo J 8: 1827–1831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang Y, Massague J . (2004). Epithelial-mesenchymal transitions: twist in development and metastasis. Cell 118: 277–279.

    Article  CAS  PubMed  Google Scholar 

  • Knoepfler PS, Eisenman RN . (1999). Sin meets NuRD and other tails of repression. Cell 99: 447–450.

    Article  CAS  PubMed  Google Scholar 

  • Kurdistani SK, Grunstein M . (2003). Histone acetylation and deacetylation in yeast. Nat Rev Mol Cell Biol 4: 276–284.

    Article  CAS  PubMed  Google Scholar 

  • Lane DP, Hoeffler WK . (1980). SV40 large T shares an antigenic determinant with a cellular protein of molecular weight 68 000. Nature 288: 167–170.

    Article  CAS  PubMed  Google Scholar 

  • Liu ZR, Sargueil B, Smith CW . (1998). Detection of a novel ATP-dependent cross-linked protein at the 5′ splice site-U1 small nuclear RNA duplex by methylene blue-mediated photo-cross-linking. Mol Cell Biol 18: 6910–6920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu Z, Ghosh S, Wang Z, Hunter T . (2003). Downregulation of caveolin-1 function by EGF leads to the loss of E-cadherin, increased transcriptional activity of beta-catenin, and enhanced tumor cell invasion. Cancer Cell 4: 499–515.

    Article  CAS  PubMed  Google Scholar 

  • Metivier R, Penot G, Hubner MR, Reid G, Brand H, Kos M et al. (2003). Estrogen receptor-alpha directs ordered, cyclical, and combinatorial recruitment of cofactors on a natural target promoter. Cell 115: 751–763.

    Article  CAS  PubMed  Google Scholar 

  • Miyoshi A, Kitajima Y, Kido S, Shimonishi T, Matsuyama S, Kitahara K et al. (2005). Snail accelerates cancer invasion by upregulating MMP expression and is associated with poor prognosis of hepatocellular carcinoma. Br J Cancer 92: 252–258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narlikar GJ, Fan HY, Kingston RE . (2002). Cooperation between complexes that regulate chromatin structure and transcription. Cell 108: 475–487.

    Article  CAS  PubMed  Google Scholar 

  • Neely KE, Workman JL . (2002). The complexity of chromatin remodeling and its links to cancer. Biochim Biophys Acta 1603: 19–29.

    CAS  PubMed  Google Scholar 

  • Nyormoi O, Bar-Eli M . (2003). Transcriptional regulation of metastasis-related genes in human melanoma. Clin Exp Metastasis 20: 251–263.

    Article  CAS  PubMed  Google Scholar 

  • Peinado H, Ballestar E, Esteller M, Cano A . (2004). Snail mediates E-cadherin repression by the recruitment of the Sin3A/histone deacetylase 1 (HDAC1)/HDAC2 complex. Mol Cell Biol 24: 306–319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radisky DC . (2005). Epithelial-mesenchymal transition. J Cell Sci 118 (Part 19): 4325–4326.

    Article  CAS  PubMed  Google Scholar 

  • Rodrigo I, Cato AC, Cano A . (1999). Regulation of E-cadherin gene expression during tumor progression: the role of a new Ets-binding site and the E-pal element. Exp Cell Res 248: 358–371.

    Article  CAS  PubMed  Google Scholar 

  • Rossow KL, Janknecht R . (2003). Synergism between p68 RNA helicase and the transcriptional coactivators CBP and p300. Oncogene 22: 151–156.

    Article  CAS  PubMed  Google Scholar 

  • Stevenson RJ, Hamilton SJ, MacCallum DE, Hall PA, Fuller-Pace FV . (1998). Expression of the ′dead box′ RNA helicase p68 is developmentally and growth regulated and correlates with organ differentiation/maturation in the fetus. J Pathol 184: 351–359.

    Article  CAS  PubMed  Google Scholar 

  • Thiery JP, Chopin D . (1999). Epithelial cell plasticity in development and tumor progression. Cancer Metastasis Rev 18: 31–42.

    Article  CAS  PubMed  Google Scholar 

  • Tong JK, Hassig CA, Schnitzler GR, Kingston RE, Schreiber SL . (1998). Chromatin deacetylation by an ATP-dependent nucleosome remodelling complex. Nature 395: 917–921.

    Article  CAS  PubMed  Google Scholar 

  • Wei Y, Hu MH . (2001). The study of p68 RNA helicase on cell transformation. Yi Chuan Xue Bao 28: 991–996.

    CAS  PubMed  Google Scholar 

  • Wilson BJ, Bates GJ, Nicol SM, Gregory DJ, Perkins ND, Fuller-Pace FV . (2004). The p68 and p72 DEAD box RNA helicases interact with HDAC1 and repress transcription in a promoter-specific manner. BMC Mol Biol 5: 11.

    Article  PubMed  PubMed Central  Google Scholar 

  • Xue Y, Wong J, Moreno GT, Young MK, Cote J, Wang W . (1998). NURD, a novel complex with both ATP-dependent chromatin-remodeling and histone deacetylase activities. Mol Cell 2: 851–861.

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Lin C, Liu ZR . (2005a). Phosphorylations of DEAD box p68 RNA helicase are associated with cancer development and cell proliferation. Mol Cancer Res 3: 355–363.

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Lin C, Liu ZR . (2005b). Signaling to the DEAD box—regulation of DEAD-box p68 RNA helicase by protein phosphorylations. Cell Signal 17: 1495–1504.

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Lin C, Liu ZR . (2006). P68 RNA helicase mediates PDGF-induced epithelial mesenchymal transition by displacing Axin from beta-catenin. Cell 127: 139–155.

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Liu ZR . (2004). Bacterially expressed recombinant p68 RNA helicase is phosphorylated on serine, threonine, and tyrosine residues. Protein Expr Purif 35: 327–333.

    Article  CAS  PubMed  Google Scholar 

  • Zavadil J, Bottinger EP . (2005). TGF-beta and epithelial-to-mesenchymal transitions. Oncogene 24: 5764–5774.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Ng HH, Erdjument-Bromage H, Tempst P, Bird A, Reinberg D . (1999). Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes Dev 13: 1924–1935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou BP, Deng J, Xia W, Xu J, Li YM, Gunduz M et al. (2004). Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial-mesenchymal transition. Nat Cell Biol 6: 931–940.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Roger Bridgeman for antibody p68-rgg production. We also thank Birgit Neuhaus for assistance in confocal imaging. This paper is greatly improved by critical comments from Jenny Yang, Mike Kirberger, Julian A. Johnson and Heena Dey. This study is supported in part by Research Grants from National Institute of Health (GM063874), (CA118113) and Georgia Cancer Coalition to ZR Liu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z-R Liu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carter, C., Lin, C., Liu, CY. et al. Phosphorylated p68 RNA helicase activates snail1 transcription by promoting HDAC1 dissociation from the snail1 promoter. Oncogene 29, 5427–5436 (2010). https://doi.org/10.1038/onc.2010.276

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.276

Keywords

This article is cited by

Search

Quick links