Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

PBK/TOPK interacts with the DBD domain of tumor suppressor p53 and modulates expression of transcriptional targets including p21

Abstract

PBK/TOPK (PDZ-binding kinase, T-LAK-cell-originated protein kinase) is a serine-threonine kinase that is overexpressed in a variety of tumor cells but its role in oncogenesis remains unclear. Here we show, by co-immunoprecipitation experiments and yeast two-hybrid analysis, that PBK/TOPK physically interacts with the tumor suppressor p53 through its DNA-binding (DBD) domain in HCT116 colorectal carcinoma cells that express wild-type p53. PBK also binds to p53 mutants carrying five common point mutations in the DBD domain. The PBK–p53 interaction appears to downmodulate p53 transactivation function as indicated by PBK/TOPK knockdown experiments, which show upregulated expression of the key p53 target gene and cyclin-dependent kinase inhibitor p21 in HCT116 cells, particularly after genotoxic damage from doxorubicin. Furthermore, stable PBK/TOPK knockdown cell lines (derived from HCT116 and MCF-7 cells) showed increased apoptosis, G2/M arrest and slower growth as compared to stable empty vector-transfected control cell lines. Gene microarray studies identified additional p53 target genes involved in apoptosis or cell cycling, which were differentially regulated by PBK knockdown. Together, these data suggest that increased levels of PBK/TOPK may contribute to tumor cell development and progression through suppression of p53 function and consequent reductions in the cell-cycle regulatory proteins such as p21. PBK/TOPK may therefore be a valid target for antineoplastic kinase inhibitors to sensitize tumor cells to chemotherapy-induced apoptosis and growth suppression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Abe Y, Matsumoto S, Kito K, Ueda N . (2000). Cloning and expression of a novel MAPKK-like protein kinase, lymphokine-activated killer T-cell-originated protein kinase, specifically expressed in the testis and activated lymphoid cells. J Biol Chem 275: 21525–21531.

    Article  CAS  PubMed  Google Scholar 

  • Abe Y, Takeuchi T, Kagawa-Miki L, Ueda N, Shigemoto K, Yasukawa M et al. (2007). A mitotic kinase TOPK enhances Cdk1/cyclin B1-dependent phosphorylation of PRC1 and promotes cytokinesis. J Mol Biol 370: 231–245.

    Article  CAS  PubMed  Google Scholar 

  • Ayllón V, O'Connor R . (2007). PBK/TOPK promotes tumour cell proliferation through p38 MAPK activity and regulation of the DNA damage response. Oncogene 26: 3451–3461.

    Article  PubMed  Google Scholar 

  • Bartke T, Siegmund D, Peters N, Reichwein M, Henkler F, Scheurich P et al. (2001). p53 upregulates cFLIP, inhibits transcription of NF-κB-regulated genes and induces caspase-8-independent cell death in DLD-1 cells. Oncogene 20: 571–580.

    Article  CAS  PubMed  Google Scholar 

  • Brooks W, Banerjee S, Crawford DF . (2007). G2E3 is a nucleo-cytoplasmic shuttling protein with DNA damage responsive localization. Exp Cell Res 313: 665–676.

    Article  CAS  PubMed  Google Scholar 

  • Brooks WS, Helton ES, Banerjee S, Venable M, Johnson L, Crawford DF et al. (2008). G2E3 is a dual function ubiquitin ligase required for early embryonic development. J Biol Chem 283: 22304–22315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bunz F, Dutriaux A, Lengauer C, Waldman T, Zhou S, Brown JP et al. (1998). Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 282: 1373–1600.

    Article  Google Scholar 

  • Cote S, Simard C, Lemieux R . (2002). Regulation of growth-related genes by interleukin-6 in murine myeloma cells. Cytokine 20: 113–120.

    Article  CAS  PubMed  Google Scholar 

  • Dougherty JD, Garcia ADR, Nakano I, Livingstone M, Norris B, Polakiewicz R et al. (2005). PBK/TOPK, a proliferating neural progenitor-specific mitogen-activated protein kinase kinase. J Neurosci 25: 10773–10785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • el-Deiry WS, Tokino T, Velculescu VE, Levy DB, Vogelstein B, Trent JM et al. (1993). WAF1, a potential mediator of p53 tumor suppression. Cell 75: 817–825.

    Article  CAS  PubMed  Google Scholar 

  • Gaudet S, Branton D, Lue RA . (2000). Characterization of PDZ-binding kinase, a mitotic kinase. Proc Natl Acad Sci 97: 5167–5172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo N, Krutzsch HC, Inman JK, Roberts DD . (1997). Thrombospondin 1 and type I repeat peptides of thromboapondin 1 specifically induce apoptosis of endothelial cells. Cancer Res 57: 1735–1742.

    CAS  PubMed  Google Scholar 

  • Hagn F, Klein C, Demmer O, Marchenko N, Vaseva A, Moll UM et al. (2010). BclxL changes conformation upon binding to wild-type but not mutant p53 DNA binding domain. J Biol Chem 285: 3439–3450.

    Article  CAS  PubMed  Google Scholar 

  • Harada H, Nakagawa K, Saito M, Kohno S, Nagato S, Furukawa K et al. (2003). Introduction of wild-type p53 enhances thrombospondin-1 expression in human glioma cells. Cancer Lett 191: 109–119.

    Article  CAS  PubMed  Google Scholar 

  • Herrero-Martin D, Osuna D, Ordonez JL, Sevillano V, Martins AS, Mackintosh C et al. (2009). Stable interference of EWS-FLI1 in an Ewing sarcoma cell line impairs IGF-1/IGF-1R signaling and reveals TOPK as a new target. Br J Cancer 101: 80–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jimenez B, Volpert OV, Crawford SE, Febbraio M, Silverstein RL, Bouck N . (2000). Signals leading to apoptosis-dependent inhibition of neovascularization by thrombospondin-1. Nat Med 6: 41–48.

    Article  CAS  PubMed  Google Scholar 

  • Kern SE, Kinzler KW, Bruskin A, Bruskin A, Jarosz D, Friedman P et al. (1991). Identification of p53 as a sequence-specific DNA-binding protein. Science 252: 1708–1711.

    Article  CAS  PubMed  Google Scholar 

  • Kiyono T, Hiraiwa A, Fujita M, Hayashi Y, Akiyama T, Ishibashi M . (1997). Binding of high-risk human papillomavirus E6 oncoproteins to the human homologue of the Drosophila discs large tumor suppressor protein. Proc Natl Acad Sci USA 94: 11612–11616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komarova EA, Chernov MV, Franks R, Wang K, Armin G, Zelnick CR et al. (1997). Transgenic mice with p53-responsive lacZ: p53 activity varies dramatically during normal development and determines radiation and drug sensitivity in vivo. EMBO J 16: 1391–1400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SS, Weiss RS, Javier RT . (1997). Binding of human virus oncoproteins to hDlg/SAP97, a mammalian homolog of the Drosophila discs large tumor suppressor protein. Proc Natl Acad Sci USA 94: 6670–6675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li M, Zhou J, Ge Y, Matherly LH, Wu G . (2003). The phosphatase MKP1 is a transcriptional target of p53 involved in cell cycle regulation. J Biol Chem 278: 41059–41068.

    Article  CAS  PubMed  Google Scholar 

  • Matsumine A, Ogai A, Senda T, Okumura N, Satoh K, Baeg GH et al. (1996). Binding of APC to the human homolog of the Drosophila discs large tumor suppressor protein. Science 272: 1020–1023.

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto S, Abe Y, Fujibuchi T, Takeuchi T, Kito K, Ueda N et al. (2004). Characterization of a MAPKK-like protein kinase TOPK. Biochem Biophys Res Commun 325: 997–1004.

    Article  CAS  PubMed  Google Scholar 

  • Müller M, Wilder S, Bannasch D, Israeli D, Lehlbach K, Krammer PH et al. (1998). p53 activates the CD95 (APO-1/Fas) gene in response to DNA damage by anticancer drugs. J Exp Med 188: 2033–2045.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nandi A, Tidwell M, Karp J, Rapoport AP . (2004). Protein expression of PDZ-binding kinase is strongly down-regulated during terminal differentiation of HL-60 leukemic cells. Blood Cells Mol Dis 32: 240–245.

    Article  CAS  PubMed  Google Scholar 

  • Nandi AK, Ford T, Fleksher D, Neuman B, Rapoport AP . (2007). Attenuation of DNA damage checkpoint by PBK, a novel mitotic kinase, involves protein–protein interaction with tumor suppressor p53. Biochem Biophys Res Commun 358: 181–188.

    Article  CAS  PubMed  Google Scholar 

  • Nandi AK, Rapoport AP . (2006). Expression of PDZ-binding kinase (PBK) is regulated by cell cycle-specific transcription factors E2F and CREB/ATF. Leuk Res 30: 437–447.

    Article  CAS  PubMed  Google Scholar 

  • Oda E, Ohki R, Murasawa H, Nemoto J, Shibue T, Yamashita T et al. (2000). Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science 288: 1053–1058.

    Article  CAS  PubMed  Google Scholar 

  • Oh SM, Zhu F, Cho YY, Lee KW, Kang BS, Kim HG et al. (2007). T-lymphokine-activated killer cell-originated protein kinase functions as a positive regulator of c-Jun-NH2-kinase 1 signaling and H-Ras-induced cell transformation. Cancer Res 67: 5186–5194.

    Article  CAS  PubMed  Google Scholar 

  • Park J-H, Lin M-L, Nishidate T, Nakamura Y, Katagiri T . (2006). PDZ-binding kinase/T-LAK cell-originated protein kinase, a putative cancer/testis antigen with an oncogenic activity in breast cancer. Cancer Res 66: 9186–9195.

    Article  CAS  PubMed  Google Scholar 

  • Patel S, George R, Autore F, Fraternali F, Ladbury JE, Nikolova PV . (2008). Molecular interactions of ASPP1 and ASPP2 with the p53 protein family and the apoptotic promoters PUMA and Bax. Nucleic Acids Res 36: 5139–5151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pohl U, Wagenknecht B, Naumann U, Weller M . (1999). p53 enhances BAK and CD95 expression in human malignant glioma cells but does not enhance CD95L-induced apoptosis. Cell Physiol Biochem 9: 29–37.

    Article  CAS  PubMed  Google Scholar 

  • Rikhof B, Corn PG, El-Deiry WS . (2003). Caspase 10 levels are increased following DNA damage in a p53-dependent manner. Cancer Biol Ther 2: 707–712.

    Article  CAS  PubMed  Google Scholar 

  • Simons-Evelyn M, Bailey-Dell K, Toretsky JA, Ross DD, Fenton R, Kalvakolanu D et al. (2001). PBK/TOPK is a novel mitotic kinase which is upregulated in Burkitt's lymphoma and other highly proliferative malignant cells. Blood Cells Mol Dis 27: 825–829.

    Article  CAS  PubMed  Google Scholar 

  • Sot B, Freund SMV, Fersht AR . (2007). Comparative biophysical characterization of p53 with the pro-apoptotic BAK and the anti-apoptotic BCL-xL . J Biol Chem 282: 29193–29200.

    Article  CAS  PubMed  Google Scholar 

  • Soussi T . (2007). p53 alterations in human cancer: more questions than answers. Oncogene 26: 2145–2156.

    Article  CAS  PubMed  Google Scholar 

  • Soussi T, Asselain B, Hamroun D, Kato S, Ishioka C, Claustres M et al. (2006). Meta-analysis of the p53 mutation database for mutant p53 biological activity reveals a methodologic bias in mutation detection. Clin Cancer Res 12: 62–69.

    Article  CAS  PubMed  Google Scholar 

  • Strano S, Dell'Orso S, Di Agostino S, Fotemaggi G, Sacchi A, Blandino G . (2007). Mutant p53: an oncogenic transcription factor. Oncogene 26: 2212–2219.

    Article  CAS  PubMed  Google Scholar 

  • Tomita Y, Marchenko N, Erster S, Nemajerova A, Dehner A, Klein C et al. (2006). WT p53, but not tumor-derived mutants bind to Bcl2 via the DNA binding domain and induce mitochondrial permeabilization. J Biol Chem 281: 8600–8606.

    Article  CAS  PubMed  Google Scholar 

  • Wendt J, Radetzki S, Haefen C, Hemmati PG, Güner D, Schulze-Osthoff K et al. (2006). Induction of p21CIP/WAF-1 and G2 arrest by ionizing irradiation impedes caspase-3-mediated apoptosis in human carcinoma cells. Oncogene 25: 972–980.

    Article  CAS  PubMed  Google Scholar 

  • Zhu F, Zykova TA, Kang BS, Wang Z, Ebeling MC, Abe Y et al. (2007). Bidirectional signals transduced by TOPK–ERK interaction increase tumorigenesis of HCT116 colorectal cancer cells. Gastroenterology 133: 219–231.

    Article  CAS  PubMed  Google Scholar 

  • Zykova TA, Zhu F, Lu C, Higgins LA, Tatsumi Y, Abe Y et al. (2006). Lymphokine-activated killer T-cell-originated protein kinase phosphorylation of histone H2AX prevents arsenite-induced apoptosis in RPMI17951 melanoma cells. Clin Cancer Res 12: 6884–6893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by philanthropic gifts from Mr Willard Hackerman, Mr and Mrs Robert Becker, and Mr and Mrs Gaylord Christle. Additional funds were provided by the Marlene and Stewart Greenebaum Cancer Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A P Rapoport.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, F., Gartenhaus, R., Eichberg, D. et al. PBK/TOPK interacts with the DBD domain of tumor suppressor p53 and modulates expression of transcriptional targets including p21. Oncogene 29, 5464–5474 (2010). https://doi.org/10.1038/onc.2010.275

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.275

Keywords

This article is cited by

Search

Quick links