Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

The unexpected role of lymphotoxin β receptor signaling in carcinogenesis: from lymphoid tissue formation to liver and prostate cancer development

Abstract

The cytokines lymphotoxin (LT) α, β and their receptor (LTβR) belong to the tumor necrosis factor (TNF) superfamily, whose founder—TNFα—was initially discovered due to its tumor necrotizing activity. LTβR signaling serves pleiotropic functions including the control of lymphoid organ development, support of efficient immune responses against pathogens due to maintenance of intact lymphoid structures, induction of tertiary lymphoid organs, liver regeneration or control of lipid homeostasis. Signaling through LTβR comprises the noncanonical/canonical nuclear factor-κB (NF-κB) pathways thus inducing chemokine, cytokine or adhesion molecule expression, cell proliferation and cell survival. Blocking LTβR signaling or Fcγ-receptor mediated immunoablation of LT-expressing cells was demonstrated to be beneficial in various infectious or noninfectious inflammatory or autoimmune disorders. Only recently, LTβR signaling was shown to initiate inflammation-induced carcinogenesis, to influence primary tumorigenesis and to control reemergence of carcinoma in various cancer models through distinct mechanisms. Indeed, LTβR signaling inhibition has already been used as efficient anti-inflammatory, anti-cancer therapy in some experimental models. Here, we review the pleiotropic functions attributed to LT, the effects of its deregulation and extensively discuss the recent literature on LT's link to carcinogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Aggarwal BB . (2003). Signalling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol 3: 745–756.

    Article  CAS  PubMed  Google Scholar 

  • Aggarwal BB, Henzel WJ, Moffat B, Kohr WJ, Harkins RN . (1985a). Primary structure of human lymphotoxin derived from 1788 lymphoblastoid cell line. J Biol Chem 260: 2334–2344.

    CAS  PubMed  Google Scholar 

  • Aggarwal BB, Kohr WJ, Hass PE, Moffat B, Spencer SA, Henzel WJ et al. (1985b). Human tumor necrosis factor. Production, purification, and characterization. J Biol Chem 260: 2345–2354.

    CAS  PubMed  Google Scholar 

  • Aggarwal BB, Kumar A, Bharti AC . (2003). Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res 23: 363–398.

    CAS  PubMed  Google Scholar 

  • Aggarwal BB, Moffat B, Harkins RN . (1984). Human lymphotoxin. Production by a lymphoblastoid cell line, purification, and initial characterization. J Biol Chem 259: 686–691.

    CAS  PubMed  Google Scholar 

  • Ammirante M, Luo J, Grivennikov S, Nedospasov S, Karin M . (2010). B cell-derived lymphotoxin promotes castration-resistant prostate cancer. Nature 464: 302–305.

    CAS  PubMed  PubMed Central  Google Scholar 

  • An MM, Fan KX, Zhang JD, Li HJ, Song SC, Liu BG et al. (2005). Lymphtoxin beta receptor-Ig ameliorates TNBS-induced colitis via blocking LIGHT/HVEM signaling. Pharmacol Res 52: 234–244.

    CAS  PubMed  Google Scholar 

  • An MM, Fan KX, Cao YB, Shen H, Zhang JD, Lu L et al. (2006). Lymphtoxin beta receptor-Ig protects from T-cell-mediated liver injury in mice through blocking LIGHT/HVEM signaling. Biol Pharm Bull 29: 2025–2030.

    CAS  PubMed  Google Scholar 

  • Anand S, Wang P, Yoshimura K, Choi IH, Hilliard A, Chen YH et al. (2006). Essential role of TNF family molecule LIGHT as a cytokine in the pathogenesis of hepatitis. J Clin Invest 116: 1045–1051.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ansel KM, Ngo VN, Hyman PL, Luther SA, Forster R, Sedgwick JD et al. (2000). A chemokine-driven positive feedback loop organizes lymphoid follicles. Nature 406: 309–314.

    CAS  PubMed  Google Scholar 

  • Armengol MP, Cardoso-Schmidt CB, Fernandez M, Ferrer X, Pujol-Borrell R, Juan M . (2003). Chemokines determine local lymphoneogenesis and a reduction of circulating CXCR4+ T and CCR7 B and T lymphocytes in thyroid autoimmune diseases. J Immunol 170: 6320–6328.

    CAS  PubMed  Google Scholar 

  • Aust G, Sittig D, Becherer L, Anderegg U, Schutz A, Lamesch P et al. (2004). The role of CXCR5 and its ligand CXCL13 in the compartmentalization of lymphocytes in thyroids affected by autoimmune thyroid diseases. Eur J Endocrinol 150: 225–234.

    CAS  PubMed  Google Scholar 

  • Balkwill F, Mantovani A . (2001). Inflammation and cancer: back to Virchow? Lancet 357: 539–545.

    Article  CAS  PubMed  Google Scholar 

  • Bettermann K, Vucur M, Haybaeck J, Koppe C, Janssen J, Heymann F et al. (2010). TAK1 suppresses a NEMO-dependent but NF-kappaB-independent pathway to liver cancer. Cancer Cell 17: 481–496.

    CAS  PubMed  Google Scholar 

  • Boehm T, Scheu S, Pfeffer K, Bleul CC . (2003). Thymic medullary epithelial cell differentiation, thymocyte emigration, and the control of autoimmunity require lympho-epithelial cross talk via LTbetaR. J Exp Med 198: 757–769.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bonizzi G, Bebien M, Otero DC, Johnson-Vroom KE, Cao Y, Vu D et al. (2004). Activation of IKKalpha target genes depends on recognition of specific kappaB binding sites by RelB:p52 dimers. EMBO J 23: 4202–4210.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bonizzi G, Karin M . (2004). The two NF-kappaB activation pathways and their role in innate and adaptive immunity. Trends Immunol 25: 280–288.

    CAS  PubMed  Google Scholar 

  • Britanova LV, Makeev VJ, Kuprash DV . (2008). in vitro selection of optimal RelB/p52 DNA-binding motifs. Biochem Biophys Res Commun 365: 583–588.

    CAS  PubMed  Google Scholar 

  • Browning JL . (2008). Inhibition of the lymphotoxin pathway as a therapy for autoimmune disease. Immunol Rev 223: 202–220.

    CAS  PubMed  Google Scholar 

  • Browning JL, Allaire N, Ngam-Ek A, Notidis E, Hunt J, Perrin S et al. (2005). Lymphotoxin-beta receptor signaling is required for the homeostatic control of HEV differentiation and function. Immunity 23: 539–550.

    CAS  PubMed  Google Scholar 

  • Browning JL, Dougas I, Ngam-ek A, Bourdon PR, Ehrenfels BN, Miatkowski K et al. (1995). Characterization of surface lymphotoxin forms. Use of specific monoclonal antibodies and soluble receptors. J Immunol 154: 33–46.

    CAS  PubMed  Google Scholar 

  • Browning JL, Ngam-ek A, Lawton P, DeMarinis J, Tizard R, Chow EP et al. (1993). Lymphotoxin beta, a novel member of the TNF family that forms a heteromeric complex with lymphotoxin on the cell surface. Cell 72: 847–856.

    CAS  PubMed  Google Scholar 

  • Carswell EA, Old LJ, Kassel RL, Green S, Fiore N, Williamson B . (1975). An endotoxin-induced serum factor that causes necrosis of tumors. Proc Natl Acad Sci USA 72: 3666–3670.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cavender DE, Edelbaum D, Ziff M . (1989). Endothelial cell activation induced by tumor necrosis factor and lymphotoxin. Am J Pathol 134: 551–560.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chae YS, Kim JG, Sohn SK, Moon JH, Kim SN, Lee SJ et al. (2010). Lymphotoxin alfa and receptor-interacting protein kinase 1 gene polymorphisms may correlate with prognosis in patients with diffuse large B cell lymphoma treated with R-CHOP. Cancer Chemother Pharmacol 65: 571–577.

    CAS  PubMed  Google Scholar 

  • Chiang EY, Kolumam GA, Yu X, Francesco M, Ivelja S, Peng I et al. (2009). Targeted depletion of lymphotoxin-alpha-expressing TH1 and TH17 cells inhibits autoimmune disease. Nat Med 15: 766–773.

    CAS  PubMed  Google Scholar 

  • Chin RK, Lo JC, Kim O, Blink SE, Christiansen PA, Peterson P et al. (2003). Lymphotoxin pathway directs thymic Aire expression. Nat Immunol 4: 1121–1127.

    CAS  PubMed  Google Scholar 

  • Colotta F, Allavena P, Sica A, Garlanda C, Mantovani A . (2009). Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis 30: 1073–1081.

    CAS  PubMed  Google Scholar 

  • Columba-Cabezas S, Griguoli M, Rosicarelli B, Magliozzi R, Ria F, Serafini B et al. (2006). Suppression of established experimental autoimmune encephalomyelitis and formation of meningeal lymphoid follicles by lymphotoxin beta receptor-Ig fusion protein. J Neuroimmunol 179: 76–86.

    CAS  PubMed  Google Scholar 

  • Compagno M, Lim WK, Grunn A, Nandula SV, Brahmachary M, Shen Q et al. (2009). Mutations of multiple genes cause deregulation of NF-kappaB in diffuse large B-cell lymphoma. Nature 459: 717–721.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Coope HJ, Atkinson PG, Huhse B, Belich M, Janzen J, Holman MJ et al. (2002). CD40 regulates the processing of NF-kappaB2 p100 to p52. EMBO J 21: 5375–5385.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cuff CA, Sacca R, Ruddle NH . (1999). Differential induction of adhesion molecule and chemokine expression by LTalpha3 and LTalphabeta in inflammation elucidates potential mechanisms of mesenteric and peripheral lymph node development. J Immunol 162: 5965–5972.

    CAS  PubMed  Google Scholar 

  • Cuff CA, Schwartz J, Bergman CM, Russell KS, Bender JR, Ruddle NH . (1998). Lymphotoxin alpha3 induces chemokines and adhesion molecules: insight into the role of LT alpha in inflammation and lymphoid organ development. J Immunol 161: 6853–6860.

    CAS  PubMed  Google Scholar 

  • De Togni P, Goellner J, Ruddle NH, Streeter PR, Fick A, Mariathasan S et al. (1994). Abnormal development of peripheral lymphoid organs in mice deficient in lymphotoxin. Science 264: 703–707.

    CAS  PubMed  Google Scholar 

  • Dejardin E, Droin NM, Delhase M, Haas E, Cao Y, Makris C et al. (2002). The lymphotoxin-beta receptor induces different patterns of gene expression via two NF-kappaB pathways. Immunity 17: 525–535.

    CAS  PubMed  Google Scholar 

  • Dohi T, Rennert PD, Fujihashi K, Kiyono H, Shirai Y, Kawamura YI et al. (2001). Elimination of colonic patches with lymphotoxin beta receptor-Ig prevents Th2 cell-type colitis. J Immunol 167: 2781–2790.

    CAS  PubMed  Google Scholar 

  • Drayton DL, Liao S, Mounzer RH, Ruddle NH . (2006). Lymphoid organ development: from ontogeny to neogenesis. Nat Immunol 7: 344–353.

    CAS  PubMed  Google Scholar 

  • Drayton DL, Ying X, Lee J, Lesslauer W, Ruddle NH . (2003). Ectopic LT alpha beta directs lymphoid organ neogenesis with concomitant expression of peripheral node addressin and a HEV-restricted sulfotransferase. J Exp Med 197: 1153–1163.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ettinger R, Munson SH, Chao CC, Vadeboncoeur M, Toma J, McDevitt HO . (2001). A critical role for lymphotoxin-beta receptor in the development of diabetes in nonobese diabetic mice. J Exp Med 193: 1333–1340.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fava RA, Notidis E, Hunt J, Szanya V, Ratcliffe N, Ngam-Ek A et al. (2003). A role for the lymphotoxin/LIGHT axis in the pathogenesis of murine collagen-induced arthritis. J Immunol 171: 115–126.

    CAS  PubMed  Google Scholar 

  • Fu YX, Chaplin DD . (1999). Development and maturation of secondary lymphoid tissues. Annu Rev Immunol 17: 399–433.

    CAS  PubMed  Google Scholar 

  • Fu YX, Huang G, Wang Y, Chaplin DD . (2000). Lymphotoxin-alpha-dependent spleen microenvironment supports the generation of memory B cells and is required for their subsequent antigen-induced activation. J Immunol 164: 2508–2514.

    CAS  PubMed  Google Scholar 

  • Fu YX, Molina H, Matsumoto M, Huang G, Min J, Chaplin DD . (1997). Lymphotoxin-alpha (LTalpha) supports development of splenic follicular structure that is required for IgG responses. J Exp Med 185: 2111–2120.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Futterer A, Mink K, Luz A, Kosco-Vilbois MH, Pfeffer K . (1998). The lymphotoxin beta receptor controls organogenesis and affinity maturation in peripheral lymphoid tissues. Immunity 9: 59–70.

    CAS  PubMed  Google Scholar 

  • Gatumu MK, Skarstein K, Papandile A, Browning JL, Fava RA, Bolstad AI . (2009). Blockade of lymphotoxin-beta receptor signaling reduces aspects of Sjogren syndrome in salivary glands of non-obese diabetic mice. Arthritis Res Ther 11: R24.

    PubMed  PubMed Central  Google Scholar 

  • Genta RM, Hamner HW, Graham DY . (1993). Gastric lymphoid follicles in Helicobacter pylori infection: frequency, distribution, and response to triple therapy. Hum Pathol 24: 577–583.

    CAS  PubMed  Google Scholar 

  • Ghosh S, Steere AC, Stollar BD, Huber BT . (2005). In situ diversification of the antibody repertoire in chronic Lyme arthritis synovium. J Immunol 174: 2860–2869.

    CAS  PubMed  Google Scholar 

  • Gommerman JL, Browning JL . (2003). Lymphotoxin/light, lymphoid microenvironments and autoimmune disease. Nat Rev Immunol 3: 642–655.

    CAS  PubMed  Google Scholar 

  • Gommerman JL, Giza K, Perper S, Sizing I, Ngam-Ek A, Nickerson-Nutter C et al. (2003). A role for surface lymphotoxin in experimental autoimmune encephalomyelitis independent of LIGHT. J Clin Invest 112: 755–767.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grabner R, Lotzer K, Dopping S, Hildner M, Radke D, Beer M et al. (2009). Lymphotoxin beta receptor signaling promotes tertiary lymphoid organogenesis in the aorta adventitia of aged ApoE-/- mice. J Exp Med 206: 233–248.

    PubMed  PubMed Central  Google Scholar 

  • Granger GA, Shacks SJ, Williams TW, Kolb WP . (1969). Lymphocyte in vitro cytotoxicity: specific release of lymphotoxin-like materials from tuberculin-sensitive lymphoid cells. Nature 221: 1155–1157.

    CAS  PubMed  Google Scholar 

  • Granger GA, Williams TW . (1968). Lymphocyte cytotoxicity in vitro: activation and release of a cytotoxic factor. Nature 218: 1253–1254.

    CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA . (2000). The hallmarks of cancer. Cell 100: 57–70.

    CAS  PubMed  Google Scholar 

  • Haybaeck J, Zeller N, Wolf MJ, Weber A, Wagner U, Kurrer MO et al. (2009). A lymphotoxin-driven pathway to hepatocellular carcinoma. Cancer Cell 16: 295–308.

    CAS  PubMed  PubMed Central  Google Scholar 

  • He G, Yu G, Temkin V, Ogata H, Kuntzen C, Sakurai T et al. (2010). Hepatocyte IKKβ/NF-κB inhibits tumor promotion and progression by preventing oxidative stress driven STAT3 activation. Cancer Cell 17: 286–297.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hehlgans T, Pfeffer K . (2005). The intriguing biology of the tumour necrosis factor/tumour necrosis factor receptor superfamily: players, rules and the games. Immunology 115: 1–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hehlgans T, Stoelcker B, Stopfer P, Muller P, Cernaianu G, Guba M et al. (2002). Lymphotoxin-beta receptor immune interaction promotes tumor growth by inducing angiogenesis. Cancer Res 62: 4034–4040.

    CAS  PubMed  Google Scholar 

  • Heikenwalder M, Prinz M, Zeller N, Lang KS, Junt T, Rossi S et al. (2008). Overexpression of lymphotoxin in T cells induces fulminant thymic involution. Am J Pathol 172: 1555–1570.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heikenwalder M, Zeller N, Seeger H, Prinz M, Klohn PC, Schwarz P et al. (2005). Chronic lymphocytic inflammation specifies the organ tropism of prions. Science 307: 1107–1110.

    CAS  PubMed  Google Scholar 

  • Hiserodt JC, Ware CF, Harris PC, Granger GA . (1977). Identification of membrane-associated lymphotoxin (LT) on mitogen-activated human lymphocytes using heterologous anti-LT antisera in vitro. Cell Immunol 34: 326–339.

    CAS  PubMed  Google Scholar 

  • Hjelmervik TO, Petersen K, Jonassen I, Jonsson R, Bolstad AI . (2005). Gene expression profiling of minor salivary glands clearly distinguishes primary Sjogren's syndrome patients from healthy control subjects. Arthritis Rheum 52: 1534–1544.

    CAS  PubMed  Google Scholar 

  • Ito D, Back TC, Shakhov AN, Wiltrout RH, Nedospasov SA . (1999). Mice with a targeted mutation in lymphotoxin-alpha exhibit enhanced tumor growth and metastasis: impaired NK cell development and recruitment. J Immunol 163: 2809–2815.

    CAS  PubMed  Google Scholar 

  • Keats JJ, Fonseca R, Chesi M, Schop R, Baker A, Chng WJ et al. (2007). Promiscuous mutations activate the noncanonical NF-kappaB pathway in multiple myeloma. Cancer Cell 12: 131–144.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi M, Mitoma J, Nakamura N, Katsuyama T, Nakayama J, Fukuda M . (2004). Induction of peripheral lymph node addressin in human gastric mucosa infected by Helicobacter pylori. Proc Natl Acad Sci USA 101: 17807–17812.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koni PA, Sacca R, Lawton P, Browning JL, Ruddle NH, Flavell RA . (1997). Distinct roles in lymphoid organogenesis for lymphotoxins alpha and beta revealed in lymphotoxin beta-deficient mice. Immunity 6: 491–500.

    CAS  PubMed  Google Scholar 

  • Kratz A, Campos-Neto A, Hanson MS, Ruddle NH . (1996). Chronic inflammation caused by lymphotoxin is lymphoid neogenesis. J Exp Med 183: 1461–1472.

    CAS  PubMed  Google Scholar 

  • Kuprash DV, Qin Z, Ito D, Grivennikov SI, Abe K, Drutskaya LN et al. (2008). Ablation of TNF or lymphotoxin signaling and the frequency of spontaneous tumors in p53-deficient mice. Cancer Lett 268: 70–75.

    CAS  PubMed  Google Scholar 

  • Lee Y, Chin RK, Christiansen P, Sun Y, Tumanov AV, Wang J et al. (2006). Recruitment and activation of naive T cells in the islets by lymphotoxin beta receptor-dependent tertiary lymphoid structure. Immunity 25: 499–509.

    CAS  PubMed  Google Scholar 

  • Ling L, Cao Z, Goeddel DV . (1998). NF-kappaB-inducing kinase activates IKK-alpha by phosphorylation of Ser-176. Proc Natl Acad Sci USA 95: 3792–3797.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Llovet JM, Burroughs A, Bruix J . (2003). Hepatocellular carcinoma. Lancet 362: 1907–1917.

    PubMed  Google Scholar 

  • Lo JC, Wang Y, Tumanov AV, Bamji M, Yao Z, Reardon CA et al. (2007). Lymphotoxin beta receptor-dependent control of lipid homeostasis. Science 316: 285–288.

    CAS  PubMed  Google Scholar 

  • Luedde T, Beraza N, Kotsikoris V, van Loo G, Nenci A, De Vos R et al. (2007). Deletion of NEMO/IKKgamma in liver parenchymal cells causes steatohepatitis and hepatocellular carcinoma. Cancer Cell 11: 119–132.

    CAS  PubMed  Google Scholar 

  • Lukashev M, LePage D, Wilson C, Bailly V, Garber E, Lukashin A et al. (2006). Targeting the lymphotoxin-beta receptor with agonist antibodies as a potential cancer therapy. Cancer Res 66: 9617–9624.

    CAS  PubMed  Google Scholar 

  • Luther SA, Lopez T, Bai W, Hanahan D, Cyster JG . (2000). BLC expression in pancreatic islets causes B cell recruitment and lymphotoxin-dependent lymphoid neogenesis. Immunity 12: 471–481.

    CAS  PubMed  Google Scholar 

  • Mackay F, Browning JL . (1998). Turning off follicular dendritic cells. Nature 395: 26–27.

    CAS  PubMed  Google Scholar 

  • Maeda S, Kamata H, Luo JL, Leffert H, Karin M . (2005). IKKbeta couples hepatocyte death to cytokine-driven compensatory proliferation that promotes chemical hepatocarcinogenesis. Cell 121: 977–990.

    CAS  PubMed  Google Scholar 

  • Maeda S, Omata M . (2008). Inflammation and cancer: role of nuclear factor-kappaB activation. Cancer Sci 99: 836–842.

    CAS  PubMed  Google Scholar 

  • Markey KA, Burman AC, Banovic T, Kuns RD, Raffelt NC, Rowe V et al. (2009). Soluble lymphotoxin is an important effector molecule in GVHD and GVL. Blood 115: 122–132.

    PubMed  Google Scholar 

  • Martin AP, Coronel EC, Sano G, Chen SC, Vassileva G, Canasto-Chibuque C et al. (2004). A novel model for lymphocytic infiltration of the thyroid gland generated by transgenic expression of the CC chemokine CCL21. J Immunol 173: 4791–4798.

    CAS  PubMed  Google Scholar 

  • McCarthy DD, Summers-Deluca L, Vu F, Chiu S, Gao Y, Gommerman JL . (2006). The lymphotoxin pathway: beyond lymph node development. Immunol Res 35: 41–54.

    CAS  PubMed  Google Scholar 

  • Montrasio F, Frigg R, Glatzel M, Klein MA, Mackay F, Aguzzi A et al. (2000). Impaired prion replication in spleens of mice lacking functional follicular dendritic cells. Science 288: 1257–1259.

    CAS  PubMed  Google Scholar 

  • Muller JR, Siebenlist U . (2003). Lymphotoxin beta receptor induces sequential activation of distinct NF-kappa B factors via separate signaling pathways. J Biol Chem 278: 12006–12012.

    PubMed  Google Scholar 

  • Muller U, Jongeneel CV, Nedospasov SA, Lindahl KF, Steinmetz M . (1987). Tumour necrosis factor and lymphotoxin genes map close to H-2D in the mouse major histocompatibility complex. Nature 325: 265–267.

    CAS  PubMed  Google Scholar 

  • Nedospasov SA, Hirt B, Shakhov AN, Dobrynin VN, Kawashima E, Accolla RS et al. (1986a). The genes for tumor necrosis factor (TNF-alpha) and lymphotoxin (TNF-beta) are tandemly arranged on chromosome 17 of the mouse. Nucleic Acids Res 14: 7713–7725.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nedospasov SA, Shakhov AN, Turetskaya RL, Mett VA, Azizov MM, Georgiev GP et al. (1986b). Tandem arrangement of genes coding for tumor necrosis factor (TNF-alpha) and lymphotoxin (TNF-beta) in the human genome. Cold Spring Harb Symp Quant Biol 51 (Part 1): 611–624.

    CAS  PubMed  Google Scholar 

  • Nedwin GE, Jarrett-Nedwin J, Smith DH, Naylor SL, Sakaguchi AY, Goeddel DV et al. (1985a). Structure and chromosomal localization of the human lymphotoxin gene. J Cell Biochem 29: 171–181.

    CAS  PubMed  Google Scholar 

  • Nedwin GE, Naylor SL, Sakaguchi AY, Smith D, Jarrett-Nedwin J, Pennica D et al. (1985b). Human lymphotoxin and tumor necrosis factor genes: structure, homology and chromosomal localization. Nucleic Acids Res 13: 6361–6373.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ngo VN, Korner H, Gunn MD, Schmidt KN, Riminton DS, Cooper MD et al. (1999). Lymphotoxin alpha/beta and tumor necrosis factor are required for stromal cell expression of homing chemokines in B and T cell areas of the spleen. J Exp Med 189: 403–412.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Norris PS, Ware CF . (2007). The LT beta R signaling pathway. Adv Exp Med Biol 597: 160–172.

    PubMed  Google Scholar 

  • Or YY, Chung GT, To KF, Chow C, Choy KW, Tong CY et al. (2009). Identification of a novel 12p13.3 amplicon in nasopharyngeal carcinoma. J Pathol 220: 97–107.

    Google Scholar 

  • Pfeffer K, Matsuyama T, Kundig TM, Wakeham A, Kishihara K, Shahinian A et al. (1993). Mice deficient for the 55 kd tumor necrosis factor receptor are resistant to endotoxic shock, yet succumb to L. monocytogenes infection. Cell 73: 457–467.

    CAS  PubMed  Google Scholar 

  • Picarella DE, Kratz A, Li CB, Ruddle NH, Flavell RA . (1992). Insulitis in transgenic mice expressing tumor necrosis factor beta (lymphotoxin) in the pancreas. Proc Natl Acad Sci USA 89: 10036–10040.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pikarsky E, Porat RM, Stein I, Abramovitch R, Amit S, Kasem S et al. (2004). NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature 431: 461–466.

    CAS  PubMed  Google Scholar 

  • Plant SR, Iocca HA, Wang Y, Thrash JC, O'Connor BP, Arnett HA et al. (2007). Lymphotoxin beta receptor (Lt betaR): dual roles in demyelination and remyelination and successful therapeutic intervention using Lt betaR-Ig protein. J Neurosci 27: 7429–7437.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pober JS . (1987). Effects of tumour necrosis factor and related cytokines on vascular endothelial cells. Ciba Found Symp 131: 170–184.

    CAS  PubMed  Google Scholar 

  • Pober JS, Lapierre LA, Stolpen AH, Brock TA, Springer TA, Fiers W et al. (1987). Activation of cultured human endothelial cells by recombinant lymphotoxin: comparison with tumor necrosis factor and interleukin 1 species. J Immunol 138: 3319–3324.

    CAS  PubMed  Google Scholar 

  • Pokholok DK, Maroulakou IG, Kuprash DV, Alimzhanov MB, Kozlov SV, Novobrantseva TI et al. (1995). Cloning and expression analysis of the murine lymphotoxin beta gene. Proc Natl Acad Sci USA 92: 674–678.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pomerantz JL, Baltimore D . (2002). Two pathways to NF-kappaB. Mol Cell 10: 693–695.

    CAS  PubMed  Google Scholar 

  • Prineas JW . (1979). Multiple sclerosis: presence of lymphatic capillaries and lymphoid tissue in the brain and spinal cord. Science 203: 1123–1125.

    CAS  PubMed  Google Scholar 

  • Puglielli MT, Browning JL, Brewer AW, Schreiber RD, Shieh WJ, Altman JD et al. (1999). Reversal of virus-induced systemic shock and respiratory failure by blockade of the lymphotoxin pathway. Nat Med 5: 1370–1374.

    CAS  PubMed  Google Scholar 

  • Rayet B, Gelinas C . (1999). Aberrant rel/nfkb genes and activity in human cancer. Oncogene 18: 6938–6947.

    CAS  PubMed  Google Scholar 

  • Rossi SW, Kim MY, Leibbrandt A, Parnell SM, Jenkinson WE, Glanville SH et al. (2007). RANK signals from CD4(+)3(−) inducer cells regulate development of Aire-expressing epithelial cells in the thymic medulla. J Exp Med 204: 1267–1272.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ruddell RG, Knight B, Tirnitz-Parker JE, Akhurst B, Summerville L, Subramaniam VN et al. (2009). Lymphotoxin-beta receptor signaling regulates hepatic stellate cell function and wound healing in a murine model of chronic liver injury. Hepatology 49: 227–239.

    CAS  PubMed  Google Scholar 

  • Ruddle NH, Waksman BH . (1967). Cytotoxic effect of lymphocyte-antigen interaction in delayed hypersensitivity. Science 157: 1060–1062.

    CAS  PubMed  Google Scholar 

  • Ruddle NH, Waksman BH . (1968). Cytotoxicity mediated by soluble antigen and lymphocytes in delayed hypersensitivity.3. Analysis of mechanism. J Exp Med 128: 1267–1279.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schneider K, Potter KG, Ware CF . (2004). Lymphotoxin and LIGHT signaling pathways and target genes. Immunol Rev 202: 49–66.

    CAS  PubMed  Google Scholar 

  • Schreyer SA, Vick CM, LeBoeuf RC . (2002). Loss of lymphotoxin-alpha but not tumor necrosis factor-alpha reduces atherosclerosis in mice. J Biol Chem 277: 12364–12368.

    CAS  PubMed  Google Scholar 

  • Senftleben U, Cao Y, Xiao G, Greten FR, Krahn G, Bonizzi G et al. (2001). Activation by IKKalpha of a second, evolutionary conserved, NF-kappa B signaling pathway. Science 293: 1495–1499.

    CAS  PubMed  Google Scholar 

  • Serafini B, Rosicarelli B, Magliozzi R, Stigliano E, Aloisi F . (2004). Detection of ectopic B-cell follicles with germinal centers in the meninges of patients with secondary progressive multiple sclerosis. Brain Pathol 14: 164–174.

    PubMed  Google Scholar 

  • Shao H, Fu Y, Song L, Sun S, Kaplan HJ, Sun D . (2003). Lymphotoxin beta receptor-Ig fusion protein treatment blocks actively induced, but not adoptively transferred, uveitis in Lewis rats. Eur J Immunol 33: 1736–1743.

    CAS  PubMed  Google Scholar 

  • Steere AC, Duray PH, Butcher EC . (1988). Spirochetal antigens and lymphoid cell surface markers in Lyme synovitis. Comparison with rheumatoid synovium and tonsillar lymphoid tissue. Arthritis Rheum 31: 487–495.

    CAS  PubMed  Google Scholar 

  • Stopfer P, Mannel DN, Hehlgans T . (2004). Lymphotoxin-beta receptor activation by activated T cells induces cytokine release from mouse bone marrow-derived mast cells. J Immunol 172: 7459–7465.

    CAS  PubMed  Google Scholar 

  • Takemura S, Braun A, Crowson C, Kurtin PJ, Cofield RH, O'Fallon WM et al. (2001). Lymphoid neogenesis in rheumatoid synovitis. J Immunol 167: 1072–1080.

    CAS  PubMed  Google Scholar 

  • Tamada K, Shimozaki K, Chapoval AI, Zhu G, Sica G, Flies D et al. (2000). Modulation of T-cell-mediated immunity in tumor and graft-versus-host disease models through the LIGHT co-stimulatory pathway. Nat Med 6: 283–289.

    CAS  PubMed  Google Scholar 

  • Tamada K, Tamura H, Flies D, Fu YX, Celis E, Pease LR et al. (2002). Blockade of LIGHT/LTbeta and CD40 signaling induces allospecific T cell anergy, preventing graft-versus-host disease. J Clin Invest 109: 549–557.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tumanov AV, Christiansen PA, Fu YX . (2007). The role of lymphotoxin receptor signaling in diseases. Curr Mol Med 7: 567–578.

    CAS  PubMed  Google Scholar 

  • Tumanov AV, Koroleva EP, Christiansen PA, Khan MA, Ruddy MJ, Burnette B et al. (2009). T cell-derived lymphotoxin regulates liver regeneration. Gastroenterology 136: 694–704 e694.

    CAS  PubMed  Google Scholar 

  • Villanueva A, Savic R, Llovet JM . (2009). Lymphotoxins: new targets for hepatocellular carcinoma. Cancer Cell 16: 272–273.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Cui H, Schroering A, Ding JL, Lane WS, McGill G et al. (2002). NF-kappa B2 p100 is a pro-apoptotic protein with anti-oncogenic function. Nat Cell Biol 4: 888–893.

    CAS  PubMed  Google Scholar 

  • Ware CF . (2005). Network communications: lymphotoxins, LIGHT, and TNF. Annu Rev Immunol 23: 787–819.

    CAS  PubMed  Google Scholar 

  • Ware CF, Granger GA . (1979). A physicochemical and immunologic comparison of the cell growth inhibitory activity of human lymphotoxins and interferons in vitro. J Immunol 122: 1763–1770.

    CAS  PubMed  Google Scholar 

  • Weih F, Caamano J . (2003). Regulation of secondary lymphoid organ development by the nuclear factor-kappaB signal transduction pathway. Immunol Rev 195: 91–105.

    CAS  PubMed  Google Scholar 

  • Worm M, Geha RS . (1994). CD40 ligation induces lymphotoxin alpha gene expression in human B cells. Int Immunol 6: 1883–1890.

    CAS  PubMed  Google Scholar 

  • Wu Q, Salomon B, Chen M, Wang Y, Hoffman LM, Bluestone JA et al. (2001). Reversal of spontaneous autoimmune insulitis in nonobese diabetic mice by soluble lymphotoxin receptor. J Exp Med 193: 1327–1332.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Q, Fu YX, Sontheimer RD . (2004). Blockade of lymphotoxin signaling inhibits the clinical expression of murine graft-versus-host skin disease. J Immunol 172: 1630–1636.

    CAS  PubMed  Google Scholar 

  • Xiao G, Harhaj EW, Sun SC . (2001). NF-kappaB-inducing kinase regulates the processing of NF-kappaB2 p100. Mol Cell 7: 401–409.

    CAS  PubMed  Google Scholar 

  • Young CL, Adamson III TC, Vaughan JH, Fox RI . (1984). Immunohistologic characterization of synovial membrane lymphocytes in rheumatoid arthritis. Arthritis Rheum 27: 32–39.

    CAS  PubMed  Google Scholar 

  • Young J, Yu X, Wolslegel K, Nguyen A, Kung C, Chiang E et al. (2010). Lymphotoxin-alphabeta heterotrimers are cleaved by metalloproteinases and contribute to synovitis in rheumatoid arthritis. Cytokine 51: 78–86.

    CAS  PubMed  Google Scholar 

  • Zhou P, Fang X, McNally BA, Yu P, Zhu M, Fu YX et al. (2009). Targeting lymphotoxin-mediated negative selection to prevent prostate cancer in mice with genetic predisposition. Proc Natl Acad Sci USA 106: 17134–17139.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr Tracy O’Connor, Dr Barbara Stecher, Jay Tracy and Lukas Frick for critically reading this paper. MH was supported by grants of the Oncosuisse foundation (OCS 02113-08-2007), the Novartis Stiftung für Biologisch-Medizinische Forschung (Nr. 09C62), the ‘Stiftung zur Schweizerischen Krebsbekämpfung’, the Helmholtz-foundation, the research foundation at the Medical Faculty Zurich, the Julius-Müller foundation and the ‘Kurt und Senta Hermann Stiftung’. MJW was supported by a grant of the Roche Research Foundation. MH is a fellow of the Professor Dr Max Cloëtta foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Heikenwalder.

Ethics declarations

Competing interests

Dr Mathias Heikenwälder is in the process of designing a clinical trial using LTBR-Ig (baminercept) in hepatitis C virus-infected patients, which would be partially funded by Biogen Idec. The planned trial is not yet approved. Dr Nicolas Zeller, Monika Wolf and Gitta Seleznik declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolf, M., Seleznik, G., Zeller, N. et al. The unexpected role of lymphotoxin β receptor signaling in carcinogenesis: from lymphoid tissue formation to liver and prostate cancer development. Oncogene 29, 5006–5018 (2010). https://doi.org/10.1038/onc.2010.260

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.260

Keywords

This article is cited by

Search

Quick links