Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Differential roles of ERK and Akt pathways in regulation of EGFR-mediated signaling and motility in prostate cancer cells

Abstract

Upregulation of epidermal growth factor receptor (EGFR) and subsequent increases in extracellular-regulated kinase (ERK) and Akt signaling are implicated in prostate cancer progression. Impaired endocytic downregulation of EGFR also contributes to oncogenic phenotypes such as metastasis. Thus, understanding the roles of divergent signaling pathways in the regulation of EGFR trafficking and EGFR-driven invasive migration may enable the development of more effective therapies. In this study, we use the human prostate cancer cell lines, DU145 and PC3, to investigate the effects of both the ERK and Akt pathways on epidermal growth factor (EGF)-mediated EGFR signaling, trafficking and cell motility. We show that DU145 and PC3 cells overexpress EGFR and migrate in a ligand (EGF)-dependent manner. Next, we show that pharmacological inhibition of ERK (but not Akt) signaling enhances EGF-induced EGFR activation, ubiquitination and downregulation, and may lead to enhanced receptor turnover. These findings negatively correlate with ERK-mediated threonine phosphorylation of EGFR, implicating it as a possible mechanism. Further, we uncover that EGF promotes disassembly of cell–cell junctions, downregulation of E-cadherin and upregulation of the transcriptional repressor, Snail, typical characteristics of epithelial–mesenchymal transition (EMT). These effects are dependent on activation of Akt, as inhibition of Akt signaling abolishes EGF/EGFR-driven cell migration and EMT. Knockdown of endogenous Snail also prevents EGFR-mediated downregulation of E-cadherin, EMT and cell migration. Surprisingly, inhibition of the ERK pathway augments EGFR-dependent motility, occurring concomitantly with elevation of EGF-induced Akt activity. Collectively, our results suggest that EGF-triggered ERK activation has profound feedback on EGFR signaling and trafficking by EGFR threonine phosphorylation, and Akt has a pivotal role in EGFR-mediated cell migration by activating EMT. More important, our results also suggest that therapeutic targeting of ERK signaling may have undesirable outcomes (for example, augmenting EGFR-driven motility).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Batlle E, Sancho E, FrancĂ­ C, DomĂ­nguez D, Monfar M, Baulida J et al. (2000). The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol 2: 84–89.

    Article  CAS  Google Scholar 

  • Cano A, PĂ©rez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG et al. (2000). The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2: 76–83.

    Article  CAS  Google Scholar 

  • Cavallaro U, Christofori G . (2004). Cell adhesion and signalling by cadherins and Ig-CAMs in cancer. Nat Rev Cancer 4: 118–132.

    Article  CAS  Google Scholar 

  • Citri A, Yarden Y . (2006). EGF-ERBB signalling: towards the systems level. Nat Rev Mol Cell Biol 7: 505–516.

    Article  CAS  Google Scholar 

  • Conacci-Sorrell M, Simcha I, Ben-Yedidia T, Blechman J, Savagner P, Ben-Ze'ev A . (2003). Autoregulation of E-cadherin expression by cadherin-cadherin interactions: the roles of beta-catenin signaling, Slug, and MAPK. J Cell Biol 163: 847–857.

    Article  CAS  Google Scholar 

  • Davies MA, Kim SJ, Parikh NU, Dong Z, Bucana CD, Gallick GE . (2002). Adenoviral-mediated expression of MMAC/PTEN inhibits proliferation and metastasis of human prostate cancer cells. Clin Cancer Res 8: 1904–1914.

    CAS  PubMed  Google Scholar 

  • Deng L, He K, Wang X, Yang N, Thangavel C, Jiang J et al. (2007). Determinants of growth hormone receptor down-regulation. Mol Endocrinol 21: 1537–1551.

    Article  CAS  Google Scholar 

  • Grandal MV, Madshus IH . (2008). Epidermal growth factor receptor and cancer: control of oncogenic signalling by endocytosis. J Cell Mol Med 12: 1527–1534.

    Article  CAS  Google Scholar 

  • Grant S, Qiao L, Dent P . (2002). Roles of ErbB family receptor tyrosine kinases, and downstream signaling pathways, in the control of cell growth and survival. Front Biosci 7: d376–d389.

    Article  CAS  Google Scholar 

  • Hemavathy K, Ashraf SI, Ip YT . (2000). Snail/slug family of repressors: slowly going into the fast lane of development and cancer. Gene 257: 1–2.

    Article  CAS  Google Scholar 

  • Hipp S, Walch A, Schuster T, Losko S, Laux H, Bolton T et al. (2010). Activation of epidermal growth factor receptor results in Snail protein but not mRNA over-expression in endometrial cancer. J Cell Mol Med 13 (9B): 3858–3867.

    Article  Google Scholar 

  • Huang Y, Chang Y, Wang X, Jiang J, Frank SJ . (2004). Growth hormone alters epidermal growth factor receptor binding affinity via activation of ERKs in 3T3-F442A cells. Endocrinology 145: 3297–3306.

    Article  CAS  Google Scholar 

  • Huang Y, Kim SO, Jiang J, Frank SJ . (2003). Growth hormone-induced phosphorylation of epidermal growth factor (EGF) receptor in 3T3-F442A cells. Modulation of EGF-induced trafficking and signaling. J Biol Chem 278: 18902–18913.

    Article  CAS  Google Scholar 

  • Huang Y, Li X, Jiang J, Frank SJ . (2006). Prolactin modulates phosphorylation, signaling and trafficking of epidermal growth factor receptor in human T47D breast cancer cells. Oncogene 25: 7565–7576.

    Article  CAS  Google Scholar 

  • Joazeiro CA, Wing SS, Huang H, Leverson JD, Hunter T, Liu YC . (1999). The tyrosine kinase negative regulator c-Cbl as a RING-type, E2-dependent ubiquitin-protein ligase. Science 286: 309–312.

    Article  CAS  Google Scholar 

  • Kambhampati S, Ray G, Sengupta K, Reddy VP, Banerjee SK, Van Veldhuizen PJ . (2005). Growth factors involved in prostate carcinogenesis. Front Biosci 10: 1355–1367.

    Article  CAS  Google Scholar 

  • Lee MY, Chou CY, Tang MJ, Shen MR . (2008). Epithelial-mesenchymal transition in cervical cancer: correlation with tumor progression, epidermal growth factor receptor overexpression, and snail up-regulation. Clin Cancer Res 14: 4743–4750.

    Article  CAS  Google Scholar 

  • Levkowitz G, Waterman H, Ettenberg SA, Katz M, Tsygankov AY, Alroy I et al. (1999). Ubiquitin ligase activity and tyrosine phosphorylation underlie suppression of growth factor signaling by c-Cbl/Sli-1. Mol Cell 4: 1029–1040.

    Article  CAS  Google Scholar 

  • Levkowitz G, Waterman H, Zamir E, Kam Z, Oved S, Langdon WY et al. (1998). c-Cbl/Sli-1 regulates endocytic sorting and ubiquitination of the epidermal growth factor receptor. Genes Dev 12: 3663–3674.

    Article  CAS  Google Scholar 

  • Li X, Huang Y, Jiang J, Frank SJ . (2008). ERK-dependent threonine phosphorylation of EGF receptor modulates receptor downregulation and signaling. Cell Signal 20: 2145–2155.

    Article  CAS  Google Scholar 

  • Lo HW, Hsu SC, Xia W, Cao X, Shih JY, Wei Y et al. (2007). Epidermal growth factor receptor cooperates with signal transducer and activator of transcription 3 to induce epithelial-mesenchymal transition in cancer cells via up-regulation of TWIST gene expression. Cancer Res 67: 9066–9076.

    Article  CAS  Google Scholar 

  • Lu Z, Ghosh S, Wang Z, Hunter T . (2003). Downregulation of caveolin-1 function by EGF leads to the loss of E-cadherin, increased transcriptional activity of beta-catenin, and enhanced tumor cell invasion. Cancer Cell 4: 499–515.

    Article  CAS  Google Scholar 

  • Ma F, Zhang D, Yang H, Sun H, Wu W, Gan Y et al. (2009). Endothelial cell-specific molecule 2 (ECSM2) modulates actin remodeling and epidermal growth factor receptor signaling. Genes Cells 14: 281–293.

    Article  CAS  Google Scholar 

  • Martin GS . (2003). Cell signaling and cancer. Cancer Cell 4: 167–174.

    Article  CAS  Google Scholar 

  • Mendelsohn J, Baselga J . (2003). Status of epidermal growth factor receptor antagonists in the biology and treatment of cancer. J Clin Oncol 21: 2787–2799.

    Article  CAS  Google Scholar 

  • Moreno-Bueno G, Portillo F, Cano A . (2008). Transcriptional regulation of cell polarity in EMT and cancer. Oncogene 27: 6958–6969.

    Article  CAS  Google Scholar 

  • Peinado H, Olmeda D, Cano A . (2007). Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer 7: 415–428.

    Article  CAS  Google Scholar 

  • Qiao M, Sheng S, Pardee AB . (2008). Metastasis and AKT activation. Cell Cycle 7: 2991–2996.

    Article  CAS  Google Scholar 

  • Roepstorff K, Grøvdal L, Grandal M, Lerdrup M, van Deurs B . (2008). Endocytic downregulation of ErbB receptors: mechanisms and relevance in cancer. Histochem Cell Biol 129: 563–578.

    Article  CAS  Google Scholar 

  • Rojas M, Yao S, Lin YZ . (1996). Controlling epidermal growth factor (EGF)-stimulated Ras activation in intact cells by a cell-permeable peptide mimicking phosphorylated EGF receptor. J Biol Chem 271: 27456–27461.

    Article  CAS  Google Scholar 

  • Schlessinger K, Hall A . (2004). GSK-3beta sets Snail's pace. Nat Cell Biol 6: 913–915.

    Article  CAS  Google Scholar 

  • Sebastian S, Settleman J, Reshkin S, Azzariti A, Bellizzi A, Paradiso A . (2006). The complexity of targeting EGFR signalling in cancer: from expression to turnover. Biochim Biophys Acta 1766: 120–139.

    CAS  PubMed  Google Scholar 

  • Thiery JP . (2002). Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2: 442–454.

    Article  CAS  Google Scholar 

  • Thiery JP, Sleeman JP . (2006). Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol 7: 131–142.

    Article  CAS  Google Scholar 

  • Traish AM, Morgentaler A . (2009). Epidermal growth factor receptor expression escapes androgen regulation in prostate cancer: a potential molecular switch for tumour growth. Br J Cancer 101: 1949–1956.

    Article  CAS  Google Scholar 

  • Tu Y, Huang Y, Zhang Y, Hua Y, Wu C . (2001). A new focal adhesion protein that interacts with integrin-linked kinase and regulates cell adhesion and spreading. J Cell Biol 153: 585–598.

    Article  CAS  Google Scholar 

  • Umbas R, Isaacs WB, Bringuier PP, Schaafsma HE, Karthaus HF, Oosterhof GO et al. (1994). Decreased E-cadherin expression is associated with poor prognosis in patients with prostate cancer. Cancer Res 54: 3929–3933.

    CAS  PubMed  Google Scholar 

  • Umbas R, Schalken JA, Aalders TW, Carter BS, Karthaus HF, Schaafsma HE et al. (1992). Expression of the cellular adhesion molecule E-cadherin is reduced or absent in high-grade prostate cancer. Cancer Res 52: 5104–5109.

    CAS  PubMed  Google Scholar 

  • van Bokhoven A, Varella-Garcia M, Korch C, Johannes WU, Smith EE, Miller HL et al. (2003). Molecular characterization of human prostate carcinoma cell lines. Prostate 57: 205–225.

    Article  CAS  Google Scholar 

  • Waterman H, Katz M, Rubin C, Shtiegman K, Lavi S, Elson A et al. (2002). A mutant EGF-receptor defective in ubiquitylation and endocytosis unveils a role for Grb2 in negative signaling. EMBO J 21: 303–313.

    Article  CAS  Google Scholar 

  • Waterman H, Levkowitz G, Alroy I, Yarden Y . (1999). The RING finger of c-Cbl mediates desensitization of the epidermal growth factor receptor. J Biol Chem 274: 22151–22154.

    Article  CAS  Google Scholar 

  • Wells A . (1999). EGF receptor. Intl J Biochem Cell Biol 31: 637–643.

    Article  CAS  Google Scholar 

  • Wiley HS . (2003). Trafficking of the ErbB receptors and its influence on signaling. Exp Cell Res 284: 78–88.

    Article  CAS  Google Scholar 

  • Wu Y, Deng J, Rychahou PG, Qiu S, Evers BM, Zhou BP . (2009). Stabilization of snail by NF-kappaB is required for inflammation-induced cell migration and invasion. Cancer Cell 15: 416–428.

    Article  CAS  Google Scholar 

  • Yang CC, Wolf DA . (2009). Inflamed snail speeds metastasis. Cancer Cell 15: 355–357.

    Article  CAS  Google Scholar 

  • Yarden Y, Sliwkowski MX . (2001). Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2: 127–137.

    Article  CAS  Google Scholar 

  • Zhang Y, Chen K, Guo L, Wu C . (2002). Characterization of PINCH-2, a new focal adhesion protein that regulates the PINCH-1-ILK interaction, cell spreading, and migration. J Biol Chem 277: 38328–38338.

    Article  CAS  Google Scholar 

  • Zhou BP, Deng J, Xia W, Xu J, Li YM, Gunduz M et al. (2004). Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial-mesenchymal transition. Nat Cell Biol 6: 931–940.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Prof. Michael Croft for generously providing retroviral expression vector for constitutively active (myristoylated) Akt. This work was supported by a St Joseph's Foundation Startup Fund (to YH). Part of this work was presented at the 91st Endocrine Society Annual Meeting in Washington DC, USA, 2009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y Huang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gan, Y., Shi, C., Inge, L. et al. Differential roles of ERK and Akt pathways in regulation of EGFR-mediated signaling and motility in prostate cancer cells. Oncogene 29, 4947–4958 (2010). https://doi.org/10.1038/onc.2010.240

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.240

Keywords

This article is cited by

Search

Quick links