Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Targeting the receptor tyrosine kinase RET sensitizes breast cancer cells to tamoxifen treatment and reveals a role for RET in endocrine resistance

Abstract

Endocrine therapy is the main therapeutic option for patients with estrogen receptor (ERα)-positive breast cancer. Resistance to this treatment is often associated with estrogen-independent activation of ERα. In this study, we show that in ERα-positive breast cancer cells, activation of the receptor tyrosine kinase RET (REarranged during Transfection) by its ligand GDNF results in increased ERα phosphorylation on Ser118 and Ser167 and estrogen-independent activation of ERα transcriptional activity. Further, we identify mTOR as a key component in this downstream signaling pathway. In tamoxifen response experiments, RET downregulation resulted in 6.2-fold increase in sensitivity of MCF7 cells to antiproliferative effects of tamoxifen, whereas GDNF stimulation had a protective effect against the drug. In tamoxifen-resistant (TAMR-1) MCF7 cells, targeting RET restored tamoxifen sensitivity. Finally, examination of two independent tissue microarrays of primary human breast cancers revealed that expression of RET protein was significantly associated with ERα-positive tumors and that in primary tumors from patients who subsequently developed invasive recurrence after adjuvant tamoxifen treatment, there was a twofold increase in the number of RET-positive tumors. Together these findings identify RET as a potentially important therapeutic target in ERα-positive breast cancers and in particular in tamoxifen-resistant tumors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Abe Y, Yoon SO, Kubota K, Mendoza MC, Gygi SP, Blenis J . (2009). p90 ribosomal S6 kinase and p70 ribosomal S6 kinase link phosphorylation of the eukaryotic chaperonin containing TCP-1 to growth factor, insulin, and nutrient signaling. J Biol Chem 284: 14939–14948.

    Article  CAS  Google Scholar 

  • Ali S, Coombes RC . (2000). Estrogen receptor alpha in human breast cancer: occurrence and significance. J Mammary Gland Biol Neoplasia 5: 271–281.

    Article  CAS  Google Scholar 

  • Ali S, Coombes RC . (2002). Endocrine-responsive breast cancer and strategies for combating resistance. Nat Rev Cancer 2: 101–112.

    Article  Google Scholar 

  • Arpino G, Gutierrez C, Weiss H, Rimawi M, Massarweh S, Bharwani L et al. (2007). Treatment of human epidermal growth factor receptor 2-overexpressing breast cancer xenografts with multiagent HER-targeted therapy. J Natl Cancer Inst 99: 694–705.

    Article  CAS  Google Scholar 

  • Arpino G, Wiechmann L, Osborne CK, Schiff R . (2008). Crosstalk between the estrogen receptor and the HER tyrosine kinase receptor family: molecular mechanism and clinical implications for endocrine therapy resistance. Endocr Rev 29: 217–233.

    Article  CAS  Google Scholar 

  • Benz CC, Scott GK, Sarup JC, Johnson RM, Tripathy D, Coronado E et al. (1992). Estrogen-dependent, tamoxifen-resistant tumorigenic growth of MCF-7 cells transfected with HER2/neu. Breast Cancer Res Treat 24: 85–95.

    Article  CAS  Google Scholar 

  • Berry NB, Fan M, Nephew KP . (2008). Estrogen receptor alpha (ER{alpha}) hinge-region lysines 302 and 303 regulate receptor degradation by the proteasome. Mol Endocrinol 22: 1535–1551.

    Article  CAS  Google Scholar 

  • Boulay A, Breuleux M, Stephan C, Fux C, Brisken C, Fiche M et al. (2008). The Ret receptor tyrosine kinase pathway functionally interacts with the ERalpha pathway in breast cancer. Cancer Res 68: 3743–3751.

    Article  CAS  Google Scholar 

  • Campbell RA, Bhat-Nakshatri P, Patel NM, Constantinidou D, Ali S, Nakshatri H . (2001). Phosphatidylinositol 3-kinase/AKT-mediated activation of estrogen receptor alpha: a new model for anti-estrogen resistance. J Biol Chem 276: 9817–9824.

    Article  CAS  Google Scholar 

  • Chang SB, Miron P, Miron A, Iglehart JD . (2007). Rapamycin inhibits proliferation of estrogen-receptor-positive breast cancer cells. J Surg Res 138: 37–44.

    Article  CAS  Google Scholar 

  • Creighton CJ, Hilger AM, Murthy S, Rae JM, Chinnaiyan AM, El-Ashry D . (2006). Activation of mitogen-activated protein kinase in estrogen receptor alpha-positive breast cancer cells in vitro induces an in vivo molecular phenotype of estrogen receptor alpha-negative human breast tumors. Cancer Res 66: 3903–3911.

    Article  CAS  Google Scholar 

  • deGraffenried LA, Friedrichs WE, Russell DH, Donzis EJ, Middleton AK, Silva JM et al. (2004). Inhibition of mTOR activity restores tamoxifen response in breast cancer cells with aberrant Akt Activity. Clin Cancer Res 10: 8059–8067.

    Article  CAS  Google Scholar 

  • Dowsett M, Houghton J, Iden C, Salter J, Farndon J, A′Hern R et al. (2006). Benefit from adjuvant tamoxifen therapy in primary breast cancer patients according oestrogen receptor, progesterone receptor, EGF receptor and HER2 status. Ann Oncol 17: 818–826.

    Article  CAS  Google Scholar 

  • Esseghir S, Todd SK, Hunt T, Poulsom R, Plaza-Menacho I, Reis-Filho JS et al. (2007). A role for glial cell derived neurotrophic factor induced expression by inflammatory cytokines and RET/GFR alpha 1 receptor up-regulation in breast cancer. Cancer Res 67: 11732–11741.

    Article  CAS  Google Scholar 

  • Frasor J, Danes JM, Komm B, Chang KC, Lyttle CR, Katzenellenbogen BS . (2003). Profiling of estrogen up- and down-regulated gene expression in human breast cancer cells: insights into gene networks and pathways underlying estrogenic control of proliferation and cell phenotype. Endocrinology 144: 4562–4574.

    Article  CAS  Google Scholar 

  • Gee JM, Robertson JF, Ellis IO, Nicholson RI . (2001). Phosphorylation of ERK1/2 mitogen-activated protein kinase is associated with poor response to anti-hormonal therapy and decreased patient survival in clinical breast cancer. Int J Cancer 95: 247–254.

    Article  CAS  Google Scholar 

  • Ghayad SE, Bieche I, Vendrell JA, Keime C, Lidereau R, Dumontet C et al. (2008). mTOR inhibition reverses acquired endocrine therapy resistance of breast cancer cells at the cell proliferation and gene-expression levels. Cancer Sci 99: 1992–2003.

    CAS  Google Scholar 

  • Green KA, Carroll JS . (2007). Oestrogen-receptor-mediated transcription and the influence of co-factors and chromatin state. Nat Rev Cancer 7: 713–722.

    Article  CAS  Google Scholar 

  • Gutierrez MC, Detre S, Johnston S, Mohsin SK, Shou J, Allred DC et al. (2005). Molecular changes in tamoxifen-resistant breast cancer: relationship between estrogen receptor, HER-2, and p38 mitogen-activated protein kinase. J Clin Oncol 23: 2469–2476.

    Article  CAS  Google Scholar 

  • Howell A, Dowsett M . (2004). Endocrinology and hormone therapy in breast cancer: aromatase inhibitors versus antioestrogens. Breast Cancer Res 6: 269–274.

    Article  CAS  Google Scholar 

  • Iorns E, Turner NC, Elliott R, Syed N, Garrone O, Gasco M et al. (2008). Identification of CDK10 as an important determinant of resistance to endocrine therapy for breast cancer. Cancer Cell 13: 91–104.

    Article  CAS  Google Scholar 

  • Joel PB, Smith J, Sturgill TW, Fisher TL, Blenis J, Lannigan DA . (1998a). pp90rsk1 regulates estrogen receptor-mediated transcription through phosphorylation of Ser-167. Mol Cell Biol 18: 1978–1984.

    Article  CAS  Google Scholar 

  • Joel PB, Traish AM, Lannigan DA . (1998b). Estradiol-induced phosphorylation of serine 118 in the estrogen receptor is independent of p42/p44 mitogen-activated protein kinase. J Biol Chem 273: 13317–13323.

    Article  CAS  Google Scholar 

  • Johnston SR . (2009). Enhancing the efficacy of hormonal agents with selected targeted agents. Clin Breast Cancer 9 (Suppl 1): S28–S36.

    Article  CAS  Google Scholar 

  • Kato S, Endoh H, Masuhiro Y, Kitamoto T, Uchiyama S, Sasaki H et al. (1995). Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase. Science 270: 1491–1494.

    Article  CAS  Google Scholar 

  • Kok M, Holm-Wigerup C, Hauptmann M, Michalides R, Stal O, Linn S et al. (2009). Estrogen receptor-alpha phosphorylation at serine-118 and tamoxifen response in breast cancer. J Natl Cancer Inst 101: 1725–1729.

    Article  CAS  Google Scholar 

  • Kurokawa H, Lenferink AE, Simpson JF, Pisacane PI, Sliwkowski MX, Forbes JT et al. (2000). Inhibition of HER2/neu (erbB-2) and mitogen-activated protein kinases enhances tamoxifen action against HER2-overexpressing, tamoxifen-resistant breast cancer cells. Cancer Res 60: 5887–5894.

    CAS  Google Scholar 

  • Leary A, Drury S, Detre S, Pancholi S, Lykkesfeldt AE, Martin LA et al. (2010). Lapatinib restores hormone sensitivity with differential effects on estrogen receptor signaling in cell models of human epidermal growth factor receptor 2–negative breast cancer with acquired endocrine resistance. Clin Cancer Res 16: 1486–1497.

    Article  CAS  Google Scholar 

  • Lin CY, Vega VB, Thomsen JS, Zhang T, Kong SL, Xie M et al. (2007). Whole-genome cartography of estrogen receptor alpha binding sites. PLoS Genet 3: e87.

    Article  Google Scholar 

  • Lykkesfeldt AE, Madsen MW, Briand P . (1994). Altered expression of estrogen-regulated genes in a tamoxifen-resistant and ICI 164 384 and ICI 182 780 sensitive human breast cancer cell line, MCF-7/TAMR-1. Cancer Res 54: 1587–1595.

    CAS  Google Scholar 

  • Martin LA, Farmer I, Johnston SR, Ali S, Marshall C, Dowsett M . (2003). Enhanced estrogen receptor (ER) alpha, ERBB2, and MAPK signal transduction pathways operate during the adaptation of MCF-7 cells to long term estrogen deprivation. J Biol Chem 278: 30458–30468.

    Article  CAS  Google Scholar 

  • Massarweh S, Osborne CK, Creighton CJ, Qin L, Tsimelzon A, Huang S et al. (2008). Tamoxifen resistance in breast tumors is driven by growth factor receptor signaling with repression of classic estrogen receptor genomic function. Cancer Res 68: 826–833.

    Article  CAS  Google Scholar 

  • Massarweh S, Schiff R . (2006). Resistance to endocrine therapy in breast cancer: exploiting estrogen receptor/growth factor signaling crosstalk. Endocr Relat Cancer 13 (Suppl 1): S15–S24.

    Article  CAS  Google Scholar 

  • Musgrove EA, Sutherland RL . (2009). Biological determinants of endocrine resistance in breast cancer. Nat Rev Cancer 9: 631–643.

    Article  CAS  Google Scholar 

  • Nicholson RI, Hutcheson IR, Harper ME, Knowlden JM, Barrow D, McClelland RA et al. (2001). Modulation of epidermal growth factor receptor in endocrine-resistant, oestrogen receptor-positive breast cancer. Endocr Relat Cancer 8: 175–182.

    Article  CAS  Google Scholar 

  • Nicholson RI, McClelland RA, Robertson JF, Gee JM . (1999). Involvement of steroid hormone and growth factor cross-talk in endocrine response in breast cancer. Endocr Relat Cancer 6: 373–387.

    Article  CAS  Google Scholar 

  • Oh AS, Lorant LA, Holloway JN, Miller DL, Kern FG, El-Ashry D . (2001). Hyperactivation of MAPK induces loss of ERalpha expression in breast cancer cells. Mol Endocrinol 15: 1344–1359.

    CAS  Google Scholar 

  • Osborne CK, Shou J, Massarweh S, Schiff R . (2005). Crosstalk between estrogen receptor and growth factor receptor pathways as a cause for endocrine therapy resistance in breast cancer. Clin Cancer Res 11: 865s–887s.

    CAS  Google Scholar 

  • Pancholi S, Lykkesfeldt AE, Hilmi C, Banerjee S, Leary A, Drury S et al. (2008). ERBB2 influences the subcellular localization of the estrogen receptor in tamoxifen-resistant MCF-7 cells leading to the activation of AKT and RPS6KA2. Endocr Relat Cancer 15: 985–1002.

    Article  CAS  Google Scholar 

  • Perez-Tenorio G, Stal O . (2002). Activation of AKT/PKB in breast cancer predicts a worse outcome among endocrine treated patients. Br J Cancer 86: 540–545.

    Article  CAS  Google Scholar 

  • Plaza-Menacho I, Koster R, van der Sloot AM, Quax WJ, Osinga J, van der Sluis T et al. (2005). RET-familial medullary thyroid carcinoma mutants Y791F and S891A activate a Src/JAK/STAT3 pathway, independent of glial cell line-derived neurotrophic factor. Cancer Res 65: 1729–1737.

    Article  Google Scholar 

  • Plaza-Menacho I, Mologni L, Sala E, Gambacorti-Passerini C, Magee AI, Links TP et al. (2007a). Sorafenib functions to potently suppress RET tyrosine kinase activity by direct enzymatic inhibition and promoting RET lysosomal degradation independent of proteasomal targeting. J Biol Chem 282: 29230–29240.

    Article  CAS  Google Scholar 

  • Plaza-Menacho I, van der Sluis T, Hollema H, Gimm O, Buys CH, Magee AI et al. (2007b). Ras/ERK1/2-mediated STAT3 Ser727 phosphorylation by familial medullary thyroid carcinoma-associated RET mutants induces full activation of STAT3 and is required for c-fos promoter activation, cell mitogenicity, and transformation. J Biol Chem 282: 6415–6424.

    Article  CAS  Google Scholar 

  • Reis-Filho JS, Steele D, Di Palma S, Jones RL, Savage K, James M et al. (2006). Distribution and significance of nerve growth factor receptor (NGFR/p75(NTR)) in normal, benign and malignant breast tissue. Mod Pathol 19: 307–319.

    Article  CAS  Google Scholar 

  • Rogatsky I, Trowbridge JM, Garabedian MJ . (1999). Potentiation of human estrogen receptor alpha transcriptional activation through phosphorylation of serines 104 and 106 by the cyclin A-CDK2 complex. J Biol Chem 274: 22296–22302.

    Article  CAS  Google Scholar 

  • Roux PP, Shahbazian D, Vu H, Holz MK, Cohen MS, Taunton J et al. (2007). RAS/ERK signaling promotes site-specific ribosomal protein S6 phosphorylation via RSK and stimulates cap-dependent translation. J Biol Chem 282: 14056–14064.

    Article  CAS  Google Scholar 

  • Sabnis GJ, Macedo LF, Goloubeva O, Schayowitz A, Brodie AM . (2008). Stopping treatment can reverse acquired resistance to letrozole. Cancer Res 68: 4518–4524.

    Article  CAS  Google Scholar 

  • Savage K, Lambros MB, Robertson D, Jones RL, Jones C, Mackay A et al. (2007). Caveolin 1 is overexpressed and amplified in a subset of basal-like and metaplastic breast carcinomas: a morphologic, ultrastructural, immunohistochemical, and in situ hybridization analysis. Clin Cancer Res 13: 90–101.

    Article  CAS  Google Scholar 

  • Shahbazian D, Roux PP, Mieulet V, Cohen MS, Raught B, Taunton J et al. (2006). The mTOR/PI3K and MAPK pathways converge on eIF4B to control its phosphorylation and activity. EMBO J 25: 2781–2791.

    Article  CAS  Google Scholar 

  • Shim WS, Conaway M, Masamura S, Yue W, Wang JP, Kmar R et al. (2000). Estradiol hypersensitivity and mitogen-activated protein kinase expression in long-term estrogen deprived human breast cancer cells in vivo. Endocrinology 141: 396–405.

    Article  CAS  Google Scholar 

  • Shou J, Massarweh S, Osborne CK, Wakeling AE, Ali S, Weiss H et al. (2004). Mechanisms of tamoxifen resistance: increased estrogen receptor-HER2/neu cross-talk in ER/HER2-positive breast cancer. J Natl Cancer Inst 96: 926–935.

    Article  CAS  Google Scholar 

  • Yamashita H, Nishio M, Toyama T, Sugiura H, Kondo N, Kobayashi S et al. (2008). Low phosphorylation of estrogen receptor alpha (ERalpha) serine 118 and high phosphorylation of ERalpha serine 167 improve survival in ER-positive breast cancer. Endocr Relat Cancer 15: 755–763.

    Article  CAS  Google Scholar 

  • Yamnik RL, Digilova A, Davis DC, Brodt ZN, Murphy CJ, Holz MK . (2009). S6 kinase 1 regulates estrogen receptor alpha in control of breast cancer cell proliferation. J Biol Chem 284: 6361–6369.

    Article  CAS  Google Scholar 

  • Yue W, Wang JP, Conaway M, Masamura S, Li Y, Santen RJ . (2002). Activation of the MAPK pathway enhances sensitivity of MCF-7 breast cancer cells to the mitogenic effect of estradiol. Endocrinology 143: 3221–3229.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Breakthrough Breast Cancer (CMI, L-AM and MD), the Association of International Cancer Research (grant 09-0533; CMI, AM and IP-M), the Mary-Jean Mitchell Green Foundation (L-AM and MD) and the Ministerio de Educación y Ciencia (MEC) of Spain (grant EX2006-1341; IP-M). We acknowledge NHS funding to the NIHR Biomedical Research Centre. We thank Anne E Lykkesfeldt for the TAMR-1 cells, Jorge Reis-Filho, Suzanne Parry, Kay Savage, Margaret Hills and Janine Salter for their help with the TMA staining and analysis, and to Ana Maria Pereira for her advice on the tamoxifen response experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C M Isacke.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plaza-Menacho, I., Morandi, A., Robertson, D. et al. Targeting the receptor tyrosine kinase RET sensitizes breast cancer cells to tamoxifen treatment and reveals a role for RET in endocrine resistance. Oncogene 29, 4648–4657 (2010). https://doi.org/10.1038/onc.2010.209

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.209

Keywords

This article is cited by

Search

Quick links