Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Regulation of autophagy by ATF4 in response to severe hypoxia

Abstract

Activating transcription factor 4 (ATF4) is a transcription factor induced under severe hypoxia and a component of the PERK pathway involved in the unfolded protein response (UPR), a process that protects cells from the negative consequences of endoplasmic reticulum (ER) stress. In this study, we have used small interfering RNA (siRNA) and microarray analysis to provide the first whole-genome analysis of genes regulated by ATF4 in cancer cells in response to severe and prolonged hypoxic stress. We show that ATF4 is required for ER stress and hypoxia-induced expansion of autophagy. MAP1LC3B (LC3B) is a key component of the autophagosomal membrane, and in this study we demonstrate that ATF4 facilitates autophagy through direct binding to a cyclic AMP response element binding site in the LC3B promoter, resulting in LC3B upregulation. Previously, we have shown that Bortezomib-induced ATF4 stabilization, which then upregulated LC3B expression and had a critical role in activating autophagy, protecting cells from Bortezomib-induced cell death. We also showed that severe hypoxia stabilizes ATF4. In this study, we demonstrate that severe hypoxia leads to ER stress and induces ATF4-dependent autophagy through LC3 as a survival mechanism. In summary, we show that ATF4 has a key role in the regulation of autophagy in response to ER stress and provide a direct mechanistic link between the UPR and the autophagic machinery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Ameri K, Lewis CE, Raida M, Sowter H, Hai T, Harris AL . (2004). Anoxic induction of ATF-4 through HIF-1-independent pathways of protein stabilization in human cancer cells. Blood 103: 1876–1882.

    Article  CAS  Google Scholar 

  • Averous J, Bruhat A, Jousse C, Carraro V, Thiel G, Fafournoux P . (2004). Induction of CHOP expression by amino acid limitation requires both ATF4 expression and ATF2 phosphorylation. J Biol Chem 279: 5288–5297.

    Article  CAS  Google Scholar 

  • Azad MB, Chen Y, Henson ES, Cizeau J, McMillan-Ward E, Israels SJ et al. (2008). Hypoxia induces autophagic cell death in apoptosis-competent cells through a mechanism involving BNIP3. Autophagy 4: 195–204.

    Article  CAS  Google Scholar 

  • Bernales S, McDonald KL, Walter P . (2006). Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response. PLoS Biol 4: e423.

    Article  Google Scholar 

  • Bi M, Naczki C, Koritzinsky M, Fels D, Blais J, Hu N et al. (2005). ER stress-regulated translation increases tolerance to extreme hypoxia and promotes tumor growth. EMBO J 24: 3470–3481.

    Article  CAS  Google Scholar 

  • Blais JD, Addison CL, Edge R, Falls T, Zhao H, Wary K et al. (2006). Perk-dependent translational regulation promotes tumor cell adaptation and angiogenesis in response to hypoxic stress. Mol Cell Biol 26: 9517–9532.

    Article  CAS  Google Scholar 

  • Graeber TG, Osmanian C, Jacks T, Housman DE, Koch CJ, Lowe SW et al. (1996). Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature 379: 88–91.

    Article  CAS  Google Scholar 

  • Harding HP, Zhang Y, Ron D . (1999). Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397: 271–274.

    Article  CAS  Google Scholar 

  • Harding HP, Zhang Y, Bertolotti A, Zeng H, Ron D . (2000). Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol Cell 5: 897–904.

    Article  CAS  Google Scholar 

  • Harding HP, Zhang Y, Zeng H, Novoa I, Lu PD, Calfon M et al. (2003). An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell 11: 619–633.

    Article  CAS  Google Scholar 

  • Harris AL . (2002). Hypoxia—a key regulatory factor in tumour growth. Nat Rev Cancer 2: 38–47.

    Article  CAS  Google Scholar 

  • He H, Dang Y, Dai F, Guo Z, Wu J, She X et al. (2003). Post-translational modifications of three members of the human MAP1LC3 family and detection of a novel type of modification for MAP1LC3B. J Biol Chem 278: 29278–29287.

    Article  CAS  Google Scholar 

  • Karpinski BA, Morle GD, Huggenvik J, Uhler MD, Leiden JM . (1992). Molecular cloning of human CREB-2: an ATF/CREB transcription factor that can negatively regulate transcription from the cAMP response element. Proc Natl Acad Sci USA 89: 4820–4824.

    Article  CAS  Google Scholar 

  • Koumenis C, Naczki C, Koritzinsky M, Rastani S, Diehl A, Sonenberg N et al. (2002). Regulation of protein synthesis by hypoxia via activation of the endoplasmic reticulum kinase PERK and phosphorylation of the translation initiation factor eIF2alpha. Mol Cell Biol 22: 7405–7416.

    Article  CAS  Google Scholar 

  • Kouroku Y, Fujita E, Tanida I, Ueno T, Isoai A, Kumagai H et al. (2007). ER stress (PERK/eIF2alpha phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation. Cell Death Differ 14: 230–239.

    Article  CAS  Google Scholar 

  • Kroemer G, Jaattela M . (2005). Lysosomes and autophagy in cell death control. Nat Rev Cancer 5: 886–897.

    Article  CAS  Google Scholar 

  • Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T et al. (2004). The role of autophagy during the early neonatal starvation period. Nature 432: 1032–1036.

    CAS  Google Scholar 

  • Lu PD, Jousse C, Marciniak SJ, Zhang Y, Novoa I, Scheuner D et al. (2004). Cytoprotection by pre-emptive conditional phosphorylation of translation initiation factor 2. EMBO J 23: 169–179.

    Article  CAS  Google Scholar 

  • Lum JJ, Bauer DE, Kong M, Harris MH, Li C, Lindsten T et al. (2005). Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell 120: 237–248.

    Article  CAS  Google Scholar 

  • Milani M, Rzymski T, Mellor HR, Pike L, Bottini A, Generali D et al. (2009). The role of ATF4 stabilization and autophagy in resistance of breast cancer cells treated with Bortezomib. Cancer Res 69: 4415–4423.

    Article  CAS  Google Scholar 

  • Mizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi Y . (2004). in vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell 15: 1101–1111.

    Article  CAS  Google Scholar 

  • Mujcic H, Rzymski T, Rouschop KM, Koritzinsky M, Milani M, Harris AL et al. (2009). Hypoxic activation of the unfolded protein response (UPR) induces expression of the metastasis-associated gene LAMP3. Radiother Oncol 92: 450–459.

    Article  CAS  Google Scholar 

  • Ogata M, Hino S, Saito A, Morikawa K, Kondo S, Kanemoto S et al. (2006). Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol Cell Biol 26: 9220–9231.

    Article  CAS  Google Scholar 

  • Ohoka N, Yoshii S, Hattori T, Onozaki K, Hayashi H . (2005). TRB3, a novel ER stress-inducible gene, is induced via ATF4-CHOP pathway and is involved in cell death. EMBO J 24: 1243–1255.

    Article  CAS  Google Scholar 

  • Olive PL, Banath JP, Durand RE . (2002). The range of oxygenation in SiHa tumor xenografts. Radiat Res 158: 159–166.

    Article  CAS  Google Scholar 

  • Papandreou I, Krishna C, Kaper F, Cai D, Giaccia AJ, Denko NC . (2005). Anoxia is necessary for tumor cell toxicity caused by a low-oxygen environment. Cancer Res 65: 3171–3178.

    Article  CAS  Google Scholar 

  • Rouschop KM, van den Beucken T, Dubois L, Niessen H, Bussink J, Savelkouls K et al. (2009). The unfolded protein response protects human tumor cells during hypoxia through regulation of the autophagy genes MAP1LC3B and ATG5. J Clin Invest 120: 127–141.

    Article  Google Scholar 

  • Rzymski T, Paantjens A, Bod J, Harris AL . (2008). Multiple pathways are involved in the anoxia response of SKIP3 including HuR-regulated RNA stability, NF-kappaB and ATF4. Oncogene 27: 4532–4543 .

    Article  CAS  Google Scholar 

  • Rzymski T, Milani M, Singleton DC, Harris AL . (2009). Role of ATF4 in regulation of autophagy and resistance to drugs and hypoxia. Cell Cycle 8: 3838–3847.

    Article  CAS  Google Scholar 

  • Sarkar S, Perlstein EO, Imarisio S, Pineau S, Cordenier A, Maglathlin RL et al. (2007). Small molecules enhance autophagy and reduce toxicity in Huntington's disease models. Nat Chem Biol 3: 331–338.

    Article  CAS  Google Scholar 

  • Scheuner D, Song B, McEwen E, Liu C, Laybutt R, Gillespie P et al. (2001). Translational control is required for the unfolded protein response and in vivo glucose homeostasis. Mol Cell 7: 1165–1176.

    Article  CAS  Google Scholar 

  • Semenza GL . (2003). Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3: 721–732.

    Article  CAS  Google Scholar 

  • Semenza GL . (2008). Mitochondrial autophagy: life and breath of the cell. Autophagy 4: 534–536.

    Article  CAS  Google Scholar 

  • Shimizu S, Kanaseki T, Mizushima N, Mizuta T, Arakawa-Kobayashi S, Thompson CB et al. (2004). Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nat Cell Biol 6: 1221–1228.

    Article  CAS  Google Scholar 

  • Shintani T, Klionsky DJ . (2004). Autophagy in health and disease: a double-edged sword. Science 306: 990–995.

    Article  CAS  Google Scholar 

  • Tu BP, Weissman JS . (2004). Oxidative protein folding in eukaryotes: mechanisms and consequences. J Cell Biol 164: 341–346.

    Article  CAS  Google Scholar 

  • Wenger RH, Gassmann M . (1996). Little difference. Nature 380: 100.

    Article  CAS  Google Scholar 

  • Wouters BG, Brown JM . (1997). Cells at intermediate oxygen levels can be more important than the ‘hypoxic fraction’ in determining tumor response to fractionated radiotherapy. Radiat Res 147: 541–550.

    Article  CAS  Google Scholar 

  • Wu J, Dang Y, Su W, Liu C, Ma H, Shan Y et al. (2006). Molecular cloning and characterization of rat LC3A and LC3B—two novel markers of autophagosome. Biochem Biophys Res Commun 339: 437–442.

    Article  CAS  Google Scholar 

  • Yamamoto A, Tagawa Y, Yoshimori T, Moriyama Y, Masaki R, Tashiro Y . (1998). Bafilomycin A1 prevents maturation of autophagic vacuoles by inhibiting fusion between autophagosomes and lysosomes in rat hepatoma cell line, H-4-II-E cells. Cell Struct Funct 23: 33–42.

    Article  CAS  Google Scholar 

  • Yorimitsu T, Nair U, Yang Z, Klionsky DJ . (2006). Endoplasmic reticulum stress triggers autophagy. J Biol Chem 281: 30299–30304.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr S Colella for help with initial microarray data analysis. We also thank Dr P Thomas for his help in using the confocal microscope and Dr D Singleton for critical revision of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A L Harris.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rzymski, T., Milani, M., Pike, L. et al. Regulation of autophagy by ATF4 in response to severe hypoxia. Oncogene 29, 4424–4435 (2010). https://doi.org/10.1038/onc.2010.191

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.191

Keywords

This article is cited by

Search

Quick links