Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

An HDAC1-binding domain within FATS bridges p21 turnover to radiation-induced tumorigenesis

Abstract

There is a gap between the initial formation of cells carrying radiation-induced genetic damage and their contribution to cancer development. Herein, we reveal a previously uncharacterized gene FATS through a genome-wide approach and demonstrate its essential role in regulating the abundance of p21 in surveillance of genome integrity. A large exon coding the NH2-terminal domain of FATS, deleted in spontaneous mouse lymphomas, is much more frequently deleted in radiation-induced mouse lymphomas. Its human counterpart is a fragile site gene at a previously identified loss of heterozygosity site. FATS is essential for maintaining steady-state level of p21 protein and sustaining DNA damage checkpoint. Furthermore, the NH2-terminal FATS physically interacts with histone deacetylase 1 (HDAC1) to enhance the acetylation of endogenous p21, leading to the stabilization of p21. Our results reveal a molecular linkage between p21 abundance and radiation-induced carcinogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  • Abbas T, Dutta A . (2009). p21 in cancer: intricate networks and multiple activities. Nat Rev Cancer 9: 400–414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barboza JA, Liu G, Ju Z, El-Naggar AK, Lozano G . (2006). p21 delays tumor onset by preservation of chromosomal stability. Proc Natl Acad Sci USA 103: 19842–19847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bendiennat M, Boulaire J, Jascur T, Brickner H, Barbier V, Sarasin A et al. (2003). UV irradiation triggers ubiquitin-dependent degradation of p21(WAF1) to promoter DNA repair. Cell 114: 599–610.

    Article  Google Scholar 

  • Bichara M, Wagner J, Lambert IB . (2006). Mechanisms of tandem repeat instability in bacteria. Mut Res 598: 144–163.

    Article  CAS  Google Scholar 

  • Bloom J, Amador V, Bartolini F, DeMartino G, Pagano M . (2003). Proteasome-mediated degradation of p21via N-terminal ubiquitinylation. Cell 115: 71–82.

    Article  CAS  PubMed  Google Scholar 

  • Brenner DJ, Doll R, Goodhead DT, Hall EJ, Land CE, Little JB et al. (2003). Cancer risks attributable to low doses of ionizing radiation: assessing what we really know. Proc Natl Acad Sci USA 100: 13761–13766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brugarolas J, Chandrasekaran C, Gordon JI, Beach D, Jacks T, Hannon GJ . (1995). Radiation-induced cell cycle arrest compromised by p21 deficiency. Nature 377: 552–557.

    Article  CAS  PubMed  Google Scholar 

  • Bunz F, Dutriaux A, Lengauer C, Waldman T, Zhou S, Brown JP et al. (1998). Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 282: 1497–1501.

    Article  CAS  PubMed  Google Scholar 

  • Buttel I, Fechter A, Schwab M . (2004). Common fragile sites and cancer: targeted cloning by insertional mutagenesis. Ann NY Acad Sci 1028: 14–27.

    PubMed  Google Scholar 

  • Cai WW, Mao JH, Chow CW, Damani S, Balmain A, Bradley A . (2002). Genome-wide detection of chromosomal imbalances in tumors using BAC microarrays. Nat Biotechnol 20: 393–396.

    Article  CAS  PubMed  Google Scholar 

  • Casper AM, Nghiem P, Arlt MF, Glover TW . (2002). ATR regulates fragile site stability. Cell 111: 779–789.

    Article  CAS  PubMed  Google Scholar 

  • Cen B, Deguchi A, Weinstein IB . (2008). Activation of protein kinase G increases the expression of p21CIP1, p27KIP1, and histidine triad protein 1 through Sp1. Cancer Res 68: 5355–5362.

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Chi Y, Bloecher A, Aebersold R, Clurman BE, Roberts JM . (2004). N-acetylation and ubiquitin-independent proteasomal degradation of p21(Cip1). Mol Cell 16: 839–847.

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Barton LF, Chi Y, Clurman BE, Roberts JM . (2007). Ubiquitin-independent degradation of cell-cycle inhibitos by the REGγ proteasome. Mol Cell 26: 843–852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coulombe P, Rodier G, Bonneil E, Thibault P, Meloche S . (2004). N-terminal ubiquitination of extracellular signal-regulated kinase 3 and p21 directs their degradation by the proteasome. Mol Cell Biol 24: 6140–6150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng C, Zhang P, Harper JW, Elledge SJ, Leder P . (1995). Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell 82: 675–684.

    Article  CAS  PubMed  Google Scholar 

  • DiTullio Jr RA, Mochan TA, Venere M, Bartkova J, Sehested M, Bartek J et al. (2002). 53BP1 functions in an ATM-dependent checkpoint pathway that is constitutively activated in human cancer. Nat Cell Biol 4: 998–1002.

    Article  CAS  PubMed  Google Scholar 

  • Dokmanovic M, Clarke C, Marks PA . (2007). Histone deacetylase inhibitors: overview and perspectives. Mol Cancer Res 5: 981–989.

    Article  CAS  PubMed  Google Scholar 

  • Durkin SG, Glover TW . (2007). Chromosome fragile sites. Annu Rev Genet 41: 169–192.

    Article  CAS  PubMed  Google Scholar 

  • Efeyan A, Collado M, Velasco-Miguel S, Serrano M . (2007). Genetic dissection of the role of p21Cip1/Waf1 in p53-mediated tumor suppression. Oncogene 26: 1645–1649.

    Article  CAS  PubMed  Google Scholar 

  • Glover TW, Arlt MF, Casper AM, Durkin SG . (2005). Mechanisms of common fragile site instability. Hum Mol Genet 14: R197–R205.

    Article  CAS  PubMed  Google Scholar 

  • Holm LE . (1990). Cancer occurring after radiotherapy and chemotherapy. Int J Radiat Oncol Biol Phy 19: 1303–1308.

    Article  CAS  Google Scholar 

  • Hoppe-Seyler F, Butz K . (1993). Repression of endogenous p53 transactivation function in HeLa cervical carcinoma cells by human papillomavirus type 16 E6, human mdm-2, and mutant p53. J Virol 67: 3111–3117.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johnstone RW . (2002). Histone-deacetylase inhibitors: novel drugs for the treatment of cancer. Nat Rev Drug Discov 1: 287–299.

    Article  CAS  PubMed  Google Scholar 

  • Kastan MB, Bartek J . (2004). Cell-cycle checkpoints and cancer. Nature 432: 316–323.

    Article  CAS  PubMed  Google Scholar 

  • Kemp CJ, Wheldon T, Balmain A . (1994). p53-deficient mice are extremely susceptible to radiation-induced tumorigenesis. Nat Genet 8: 66–69.

    Article  CAS  PubMed  Google Scholar 

  • Kim GD, Choi YH, Dimtchev A, Jeong SJ, Dritschilo A, Jung M . (1999). Sensing of ionizing radiation-induced DNA damage by ATM through interaction with histone deacetylase. J Biol Chem 274: 31127–31130.

    Article  CAS  PubMed  Google Scholar 

  • Lagger G, O'Carroll D, Rembold M, Khier H, Tischler J, Weitzer G et al. (2002). Essential function of histone deacetylase 1 in proliferation control and CDK inhibitor repression. EMBO J 21: 2672–2681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Amazit L, Long W, Lonard DM, Monaco JJ, O'Malley BW . (2007). Ubiquitin- and ATP-independent proteolytic turnover of p21 by the REGγ-proteasome pathway. Mol Cell 26: 831–842.

    Article  PubMed  Google Scholar 

  • Li Z, Day CP, Yang JY, Tsai WB, Lozano G, Shih HM et al. (2004). Adenoviral E1A targets Mdm4 to stabilize tumor suppressor p53. Cancer Res 64: 9080–9085.

    Article  CAS  PubMed  Google Scholar 

  • Liehr T, Heller A, Starke H, Claussen U . (2002). FISH banding methods: applications in research and diagnosis. Expert Rev Mol Diagn 2: 217–225.

    Article  CAS  PubMed  Google Scholar 

  • Lin RJ, Nagy L, Inoue S, Shao W, Miller WH, Evans RM . (1998). Role of the histone deacetylase complex in acute promyelocytic leukaemia. Nature 391: 811–814.

    Article  CAS  PubMed  Google Scholar 

  • Macleod KF, Sherry N, Hannon G, Beach D, Tokino T, Kinzler K et al. (1995). P 53-dependent and independent expression of p21 during cell growth, differentiation, and DNA damage. Genes Dev 9: 935–944.

    Article  CAS  PubMed  Google Scholar 

  • Magrath IT . (1997). The treatment of pediatric lymphomas: paradigms to plagiarize? Ann Oncol 8: 7–14.

    Article  PubMed  Google Scholar 

  • Maier D, Comparone D, Taylor E, Zhang Z, Gratzl O, van Meir EG et al. (1997). New deletion in low-grade oligodendroglioma at the glioblastoma suppressor locus on chromosome 10q25-26. Oncogene 15: 997–1000.

    Article  CAS  PubMed  Google Scholar 

  • Mangelsdorf M, Ried K, Woollatt E, Dayan S, Eyre H, Finnis M et al. (2000). Chromosomal fragile site FRA16D and DNA instability in cancer. Cancer Res 60: 1683–1689.

    CAS  PubMed  Google Scholar 

  • Mao JH, Li J, Jiang T, Li Q, Wu D, Perez-Losada J et al. (2005). Genomic instability in radiation-induced mouse lymphoma from p53 heterozygous mice. Oncogene 24: 7924–7934.

    Article  CAS  PubMed  Google Scholar 

  • Martin-Caballero J, Flores JM, Garcia-Palencia P, Serrano M . (2001). Tumor susceptibility of p21(Waf1/Cip1)-deficient mice. Cancer Res 61: 6234–6238.

    CAS  PubMed  Google Scholar 

  • Maser RS, DePinho RA . (2002). Connecting chromosomes, crisis, and cancer. Science 297: 565–569.

    Article  CAS  PubMed  Google Scholar 

  • Nagase S, Yamakawa H, Sato S, Yajima A, Horii A . (1997). Identification of a 790-kilobase region of common allelic loss in chromosome 10q25-q26 in human endometrial cancer. Cancer Res 57: 1630–1633.

    CAS  PubMed  Google Scholar 

  • Ohi R, Gould KL . (1999). Regulating the onset of mitosis. Curr Opin Cell Biol 11: 267–273.

    Article  CAS  PubMed  Google Scholar 

  • Pagano M, Tam SW, Theodoras AM, Beer-Romero P, Del Sal G, Chau V et al. (1995). Role of the ubiquitin-proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27. Science 269: 682–685.

    Article  CAS  PubMed  Google Scholar 

  • Pearson CE, edamura KN, Cleary JD . (2005). Repeat instability: mechanisms of dynamic mutations. Nat Rev Genet 6: 729–742.

    Article  CAS  PubMed  Google Scholar 

  • Rouse J, Jackson SP . (2002). Interfaces between the detection, signaling, and repair of DNA damage. Science 297: 547–551.

    Article  CAS  PubMed  Google Scholar 

  • Schellong G . (1998). Pediatric Hodgkin's disease: treatment in the late 1990s. Ann Oncol 9: S115–S119.

    Article  PubMed  Google Scholar 

  • Sherr CJ, Roberts TM . (1999). CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 13: 1501–1512.

    Article  CAS  PubMed  Google Scholar 

  • Shiloh Y . (2003). ATM and related protein kinase: safeguarding genome integrity. Nat Rev Cancer 3: 155–168.

    Article  CAS  PubMed  Google Scholar 

  • Schwartz M, Zlotorynski E, Kerem B . (2006). The molecular basis of common and rare fragile sites. Cancer Lett 232: 13–26.

    Article  CAS  PubMed  Google Scholar 

  • Sheaff RJ, Singer JD, Swanger J, Smitherman M, Roberts JM, Clurman BE . (2000). Proteasomal turnover of p21Cip1 does not require p21Cip1 ubiquitination. Mol Cell 5: 403–410.

    Article  CAS  PubMed  Google Scholar 

  • Touitou R, Richardson J, Bose S, Nakanishi M, Rivett J, Allday MJ . (2001). A degradation signal located in the C-terminus of p21WAF1/CIP1 is a binding site for the C8 alpha-subunit of the 20S proteasome. EMBO J 20: 2367–2375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Gent DC, Hoeijmakers JH, Kanaar R . (2001). Chromosomal stability and the DNA double-stranded break connection. Nat Rev Genet 2: 196–206.

    Article  CAS  PubMed  Google Scholar 

  • Varshavsky A, Turner G, Du F, Xie Y . (2000). Felix HoppeSeyler Lecture 2000. The ubiquitin system and the N-end rule pathway. Biol Chem 381: 779–789.

    Article  CAS  PubMed  Google Scholar 

  • Wei Q, Miskimins WK, Miskimins R . (2003). The Sp1 family of transcription factor is involved in p27(Kip1)-mediated activation of myelin basic protein gene expression. Mol Cell Biol 23: 4035–4045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winter ZE, Leek RD, Bradburn MJ, Norbury CJ, Harris AL . (2003). Cytoplasmic p21WAF1/CIP1 expression is correlated with HER-2/neu in breast cancer and is an independent predictor of prognosis. Breast Cancer Res 5: R242–R249.

    Article  Google Scholar 

  • Xia W, Chen JS, Zhou X, Sun PR, Lee DF, Liao Y et al. (2004). Phosphorylation/cytoplasmic localization of p21C/p1/WAF1 is associated with HER2/neu overexpression and provided a novel combination predictor for poor prognosis in breast cancer patients. Clin Cancer Res 10: 3815–3824.

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Freudenreich CH . (2007). An AT-rich sequence in human common fragile site FRA16D causes fork stalling and chromosome breakage in S. cerevisiae. Mol Cell 27: 367–379.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou BP, Liao Y, Xia W, Spohn B, Lee MH, Hung MC . (2001). Cytoplasmic localization of p21Cip1/WAF1 by Akt-induced phosphorylation in HER-2/neu-overexpressing cells. Nat Cell Biol 3: 245–252.

    Article  CAS  PubMed  Google Scholar 

  • Zupkovitz G, Tischler J, Posch M, Sadzak I, Ramsauer K, Egger G et al. (2006). Negative and positive regulation of gene expression by mouse histone deacetylase 1. Mol Cell Biol 26: 7913–7928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Mien-Chi Hung for critical discussions. We thank Xiangwei He and Qi Gao for assistance in microscopic imaging; Tao Jiang and Qian Li for technical assistance. This study was supported in part by the following grants: Tianjin Medical University Cancer Institute and Hospital Start-up 08Y01 (to Z Li); Ministry of Science and Technology of China 973-program Concept Award 2009CB526407 (to Z Li); Tianjin Municipal Science and Technology Foundation (to Z Li); Department of defense of United States FG02-03ER63630 (to A Balmain); IZKF Jena Start-up S16 (to T Liehr).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Z Li or W-W Cai.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Z., Zhang, Q., Mao, JH. et al. An HDAC1-binding domain within FATS bridges p21 turnover to radiation-induced tumorigenesis. Oncogene 29, 2659–2671 (2010). https://doi.org/10.1038/onc.2010.19

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.19

Keywords

This article is cited by

Search

Quick links