Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Notch1-induced mammary tumor development is cyclin D1-dependent and correlates with expansion of pre-malignant multipotent duct-limited progenitors

Abstract

Members of the Notch family are involved in the development of breast cancer in animal models and in humans. In young transgenic mice, expressing intracellular activated Notch1 (N1IC) in mammary cells, we found that CD24+ CD29high progenitor cells had enhanced survival, and were expanded through a cyclin D1-dependent pathway. This expansion positively correlated with the later cyclin D1-dependent formation of basal-like ductal tumors. This expanded population exhibited abnormal differentiation skewed toward the basal cells, showed signs of pre-malignancy (low PTEN/p53 and high c-myc) and contained stem cells with impaired self-renewal in vivo, and more numerous multipotent, ductal-restricted progenitors. Our data suggest that N1IC can favor transformation of progenitor cells early in life through a cyclin D1-dependent pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Ahmed KM, Fan M, Nantajit D, Cao N, Li JJ . (2008). Cyclin D1 in low-dose radiation-induced adaptive resistance. Oncogene 27: 6738–6748.

    Article  CAS  Google Scholar 

  • Asselin-Labat ML, Shackleton M, Stingl J, Vaillant F, Forrest NC, Eaves CJ et al. (2006). Steroid hormone receptor status of mouse mammary stem cells. J Natl Cancer Inst 98: 1011–1014.

    Article  CAS  Google Scholar 

  • Beverly LJ, Felsher DW, Capobianco AJ . (2005). Suppression of p53 by Notch in lymphomagenesis: implications for initiation and regression. Cancer Res 65: 7159–7168.

    Article  CAS  Google Scholar 

  • Bouras T, Pal B, Vaillant F, Harburg G, Asselin-Labat ML, Oakes SR et al. (2008). Notch signaling regulates mammary stem cell function and luminal cell-fate commitment. Cell Stem Cell 3: 429–441.

    Article  CAS  Google Scholar 

  • Brown JM, Wouters BG . (1999). Apoptosis, p53, and tumor cell sensitivity to anticancer agents. Cancer Res 59: 1391–1399.

    CAS  PubMed  Google Scholar 

  • Buono KD, Robinson GW, Martin C, Shi S, Stanley P, Tanigaki K et al. (2006). The canonical Notch/RBP-J signaling pathway controls the balance of cell lineages in mammary epithelium during pregnancy. Dev Biol 293: 565–580.

    Article  CAS  Google Scholar 

  • Callahan R, Egan SE . (2004). Notch signaling in mammary development and oncogenesis. J Mammary Gland Biol Neoplasia 9: 145–163.

    Article  Google Scholar 

  • Ciofani M, Zuniga-Pflucker JC . (2005). Notch promotes survival of pre-T cells at the beta-selection checkpoint by regulating cellular metabolism. Nat Immunol 6: 881–888.

    Article  CAS  Google Scholar 

  • DeOme KB, Faulkin Jr LJ, Bern HA, Blair PB . (1959). Development of mammary tumors from hyperplastic alveolar nodules transplanted into gland-free mammary fat pads of female C3H mice. Cancer Res 19: 515–520.

    CAS  PubMed  Google Scholar 

  • Dontu G, Jackson KW, McNicholas E, Kawamura MJ, Abdallah WM, Wicha MS . (2004). Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells. Breast Cancer Res 6: R605–R615.

    Article  CAS  Google Scholar 

  • Gusterson B . (2009). Do ‘basal-like’ breast cancers really exist? Nat Rev Cancer 9: 128–134.

    Article  CAS  Google Scholar 

  • Hanna Z, Priceputu E, Chrobak P, Hu C, Dugas V, Goupil M et al. (2009). Selective expression of human immunodeficiency virus Nef in specific immune cell populations of transgenic mice is associated with distinct AIDS-like phenotypes. J Virol 83: 9743–9758.

    Article  CAS  Google Scholar 

  • Hu C, Dievart A, Lupien M, Calvo E, Tremblay G, Jolicoeur P . (2006). Overexpression of activated murine Notch1 and Notch3 in transgenic mice blocks mammary gland development and induces mammary tumors. Am J Patho 168: 973–990.

    Article  CAS  Google Scholar 

  • Iso T, Kedes L, Hamamori Y . (2003). HES and HERP families: multiple effectors of the Notch signaling pathway. J Cell Physiol 194: 237–255.

    Article  CAS  Google Scholar 

  • Kiaris H, Politi K, Grimm LM, Szabolcs M, Fisher P, Efstratiadis A et al. (2004). Modulation of notch signaling elicits signature tumors and inhibits hras1-induced oncogenesis in the mouse mammary epithelium. Am J Pathol 165: 695–705.

    Article  CAS  Google Scholar 

  • Klinakis A, Szabolcs M, Politi K, Kiaris H, Artavanis-Tsakonas S, Efstratiadis A . (2006). Myc is a Notch1 transcriptional target and a requisite for Notch1-induced mammary tumorigenesis in mice. Proc Natl Acad Sci USA 103: 9262–9267.

    Article  CAS  Google Scholar 

  • Lee CW, Simin K, Liu Q, Plescia J, Guha M, Khan A et al. (2008). A functional Notch-survivin gene signature in basal breast cancer. Breast Cancer Res 10: R97.

    Article  Google Scholar 

  • Marty B, Maire V, Gravier E, Rigaill G, Vincent-Salomon A, Kappler M et al. (2008). Frequent PTEN genomic alterations and activated phosphatidylinositol 3-kinase pathway in basal-like breast cancer cells. Breast Cancer Res 10: R101.

    Article  Google Scholar 

  • Massague J . (2004). G1 cell-cycle control and cancer. Nature 432: 298–306.

    Article  CAS  Google Scholar 

  • Michels KB, Willett WC . (2004). Breast cancer—early life matters. N Engl J Med 351: 1679–1681.

    Article  CAS  Google Scholar 

  • Mungamuri SK, Yang X, Thor AD, Somasundaram K . (2006). Survival signaling by Notch1: mammalian target of rapamycin (mTOR)-dependent inhibition of p53. Cancer Res 66: 4715–4724.

    Article  CAS  Google Scholar 

  • Nair P, Somasundaram K, Krishna S . (2003). Activated Notch1 inhibits p53-induced apoptosis and sustains transformation by human papillomavirus type 16 E6 and E7 oncogenes through a PI3K-PKB/Akt-dependent pathway. J Virol 77: 7106–7112.

    Article  CAS  Google Scholar 

  • Oishi K, Kamakura S, Isazawa Y, Yoshimatsu T, Kuida K, Nakafuku M et al. (2004). Notch promotes survival of neural precursor cells via mechanisms distinct from those regulating neurogenesis. Dev Biol 276: 172–184.

    Article  CAS  Google Scholar 

  • Palomero T, Lim WK, Odom DT, Sulis ML, Real PJ, Margolin A et al. (2006). NOTCH1 directly regulates c-MYC and activates a feed-forward-loop transcriptional network promoting leukemic cell growth. Proc Natl Acad Sci USA 103: 18261–18266.

    Article  CAS  Google Scholar 

  • Palomero T, Sulis ML, Cortina M, Real PJ, Barnes K, Ciofani M et al. (2007). Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia. Nat Med 13: 1203–1210.

    Article  CAS  Google Scholar 

  • Raouf A, Zhao Y, To K, Stingl J, Delaney A, Barbara M et al. (2008). Transcriptome analysis of the normal human mammary cell commitment and differentiation process. Cell Stem Cell 3: 109–118.

    Article  CAS  Google Scholar 

  • Reedijk M, Odorcic S, Chang L, Zhang H, Miller N, McCready DR et al. (2005). High-level coexpression of JAG1 and NOTCH1 is observed in human breast cancer and is associated with poor overall survival. Cancer Res 65: 8530–8537.

    Article  CAS  Google Scholar 

  • Ronchini C, Capobianco AJ . (2001). Induction of Cyclin D1 transcription and CDK2 activity by Notchic: implication for cell cycle disruption in transformation by Notchic. Mol Cell Biol 21: 5925–5934.

    Article  CAS  Google Scholar 

  • Roue G, Pichereau V, Lincet H, Colomer D, Sola B . (2008). Cyclin D1 mediates resistance to apoptosis through upregulation of molecular chaperones and consequent redistribution of cell death regulators. Oncogene 27: 4909–4920.

    Article  CAS  Google Scholar 

  • Saal LH, Gruvberger-Saal SK, Persson C, Lovgren K, Jumppanen M, Staaf J et al. (2008). Recurrent gross mutations of the PTEN tumor suppressor gene in breast cancers with deficient DSB repair. Nat Genet 40: 102–107.

    Article  CAS  Google Scholar 

  • Salmena L, Carracedo A, Pandolfi PP . (2008). Tenets of PTEN tumor suppression. Cell 133: 403–414.

    Article  CAS  Google Scholar 

  • Shackleton M, Vaillant F, Simpson KJ, Stingl J, Smyth GK, Asselin-Labat ML et al. (2006). Generation of a functional mammary gland from a single stem cell. Nature 439: 84–88.

    Article  CAS  Google Scholar 

  • Sicinski P, Donaher JL, Parker SB, Li T, Fazeli A, Gardner H et al. (1995). Cyclin D1 provides a link between development and oncogenesis in the retina and breast. Cell 82: 621–630.

    Article  CAS  Google Scholar 

  • Smith GH, Medina D . (2008). Re-evaluation of mammary stem cell biology based on in vivo transplantation. Breast Cancer Res 10: 203–208.

    Article  Google Scholar 

  • Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H et al. (2001). Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98: 10869–10874.

    Article  CAS  Google Scholar 

  • Stahl M, Ge C, Shi S, Pestell RG, Stanley P . (2006). Notch1-induced transformation of RKE-1 cells requires up-regulation of cyclin D1. Cancer Res 66: 7562–7570.

    Article  CAS  Google Scholar 

  • Stingl J, Eirew P, Ricketson I, Shackleton M, Vaillant F, Choi D et al. (2006). Purification and unique properties of mammary epithelial stem cells. Nature 439: 993–997.

    Article  CAS  Google Scholar 

  • Stylianou S, Clarke RB, Brennan K . (2006). Aberrant activation of notch signaling in human breast cancer. Cancer Res 66: 1517–1525.

    Article  CAS  Google Scholar 

  • Weng AP, Millholland JM, Yashiro-Ohtani Y, Arcangeli ML, Lau A, Wai C et al. (2006). c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. Genes Dev 20: 2096–2109.

    Article  CAS  Google Scholar 

  • Yilmaz OH, Valdez R, Theisen BK, Guo W, Ferguson DO, Wu H et al. (2006). Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature 441: 475–482.

    Article  CAS  Google Scholar 

  • Yu Q, Geng Y, Sicinski P . (2001). Specific protection against breast cancers by cyclin D1 ablation. Nature 411: 1017–1021.

    Article  CAS  Google Scholar 

  • Zhang J, Grindley JC, Yin T, Jayasinghe S, He XC, Ross JT et al. (2006). PTEN maintains haematopoietic stem cells and acts in lineage choice and leukaemia prevention. Nature 441: 518–522.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grant to PJ from the Canadian Institute of Heath Research (CIHR). PJ is a recipient of a Canada Research Chair and HL of a Postdoctoral Fellowship from CIHR Training grant in cancer. We are grateful to Annie Lavallée as well as to Eric Massicotte and Martine Dupuis for excellent assistance with tissue sections and flow cytometry, respectively, and to Dominic Filion for image analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Jolicoeur.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ling, H., Sylvestre, JR. & Jolicoeur, P. Notch1-induced mammary tumor development is cyclin D1-dependent and correlates with expansion of pre-malignant multipotent duct-limited progenitors. Oncogene 29, 4543–4554 (2010). https://doi.org/10.1038/onc.2010.186

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.186

Keywords

This article is cited by

Search

Quick links