Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

CCDC6 represses CREB1 activity by recruiting histone deacetylase 1 and protein phosphatase 1

Abstract

RET/papillary thyroid carcinoma 1 (PTC1) oncogene is frequently activated in human PTCs. It is characterized by the fusion of the intracellular kinase-encoding domain of RET to the first 101 amino acids of CCDC6. The aim of our work is to characterize the function of the CCDC6 protein to better understand the function of its truncation, that results in the loss of the expression of one allele, in the process of thyroid carcinogenesis. Here, we report that CCDC6 interacts with CREB1 and represses its transcriptional activity by recruiting histone deacetylase 1 and protein phosphatase 1 proteins at the CRE site of the CREB1 target genes. Finally, we show an increased CREB1 phosphorylation and activity in PTCs carrying the RET/PTC1 oncogene. Consistently, an increased expression of two known CREB1 target genes, AREG and cyclin A, was observed in this subgroup of thyroid papillary carcinomas. Therefore, the repression of CREB1 activity by CCDC6 has a critical function in the development of human thyroid papillary carcinomas carrying RET/PTC1 activation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Bennett D . (2005). Transcriptional control by chromosome-associated protein phosphatase-1. Biochem Soc Trans 33 (Pt 6): 1444–1446.

    Article  CAS  Google Scholar 

  • Berasain C, Castillo J, Perugorría MJ, Prieto J, Avila MA . (2007). Amphiregulin: a new growth factor in hepatocarcinogenesis. Cancer Lett 254: 30–41.

    Article  CAS  Google Scholar 

  • Canettieri G, Morantte I, Guzmán E, Asahara H, Herzig S, Anderson SD et al. (2003). Attenuation of a phosphorylation-dependent activator by an HDAC-PP1 complex. Nat Struct Biol 10: 175–181.

    Article  CAS  Google Scholar 

  • Celetti A, Cerrato A, Merolla F, Vitagliano D, Vecchio G, Grieco M . (2004). H4(D10S170), a gene frequently rearranged with RET in papillary thyroid carcinomas: functional characterization. Oncogene 23: 109–121.

    Article  CAS  Google Scholar 

  • De Angelis R, Iezzi S, Bruno T, Corbi N, Di Padova M, Floridi A et al. (2003). Functional interaction of the subunit 3 of RNA polymerase II (RPB3) with transcription factor-4 (ATF4). FEBS Lett 547: 15–19.

    Article  CAS  Google Scholar 

  • De Martino I, Visone R, Wierinckx A, Palmieri D, Ferraro A, Cappabianca P et al. (2009). HMGA proteins up-regulate CCNB2 gene in mouse and human pituitary adenomas. Cancer Res 69: 1844–1850.

    Article  CAS  Google Scholar 

  • Dettori T, Frau DV, Garcia JL, Pierantoni G, Lee C, Hernandez JM et al. (2004). Comprehensive conventional and molecular cytogenetic characterization of B-CPAP, a human papillary thyroid carcinoma-derived cell line. Cancer Genet Cytogenet 151: 171–177.

    Article  CAS  Google Scholar 

  • Drechsler M, Hildebrandt B, Kündgen A, Germing U, Royer-Pokora B . (2007). Fusion of H4/D10S170 to PDGFRbeta in a patient with chronic myelomonocytic leukemia and long-term responsiveness to imatinib. Ann Hematol 86: 353–354.

    Article  Google Scholar 

  • Fabien N, Fusco A, Santoro M, Barbier Y, Dubois PM, Paulin C . (1994). Description of a human papillary thyroid carcinoma cell line. Morphologic study and expression of tumoral markers. Cancer 73: 2206–2212.

    Article  CAS  Google Scholar 

  • Fedele M, Pentimalli F, Baldassarre G, Battista S, Klein-Szanto AJ, Kenyon L et al. (2005). Transgenic mice over-expressing the wild-type form of the HMGA1 gene develop mixed growth hormone/prolactin cell pituitary adenomas and natural killer cell lymphomas. Oncogene 24: 3427–3435.

    Article  CAS  Google Scholar 

  • Gao J, Siddoway B, Huang Q, Xia H . (2009). Inactivation of CREB mediated gene transcription by HDAC8 bound protein phosphatase. Biochem Biophys Res Commun 379: 1–5.

    Article  CAS  Google Scholar 

  • Gonzalez GA, Montminy MR . (1989). Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at serine 133. Cell 59: 675–680.

    Article  CAS  Google Scholar 

  • Grieco M, Santoro M, Berlingieri MT, Melillo RM, Donghi R, Bongarzone I et al. (1990). PTC is a novel rearranged form of the RET proto-oncogene and is frequently detected in vivo in human thyroid papillary carcinomas. Cell 60: 557–563.

    Article  CAS  PubMed Central  Google Scholar 

  • Grieco M, Cerrato A, Santoro M, Fusco A, Melillo RM, Vecchio G . (1994). Cloning and characterization of H4(D10S170), a gene involved in RET rearrangements in vivo. Oncogene 9: 2531–2535.

    CAS  Google Scholar 

  • Hagiwara M, Alberts A, Brindle P, Meinkoth J, Feramisco J, Deng T et al. (1992). Transcriptional attenuation following cAMP induction requires PP-1-mediated dephosphorylation of CREB. Cell 70: 105–113.

    Article  CAS  Google Scholar 

  • Han Y, Haines CJ, Feng HL . (2007). Role(s) of the serine/threonine protein phosphatase 1 on mammalian sperm motility. Arch Androl 53: 169–177.

    Article  CAS  Google Scholar 

  • Hu XD, Huang Q, Roadcap DW, Shenolikar SS, Xia H . (2006). Actin-associated neurabin-protein phosphatase-1 complex regulates hippocampal plasticity. J Neurochem 98: 1841–1851.

    Article  CAS  Google Scholar 

  • Kimura T, Van Keymeulen A, Golstein J, Fusco A, Dumont JE, Roger PP . (2001). Regulation of thyroid cell proliferation by TSH and other factors: a critical evaluation of in vitro models. Endocr Rev 22: 631–656.

    Article  CAS  Google Scholar 

  • Klumpp S, Krieglstein J . (2002). Serine/threonine protein phosphatases in apoptosis. Curr Opin Pharmacol 2: 458–462.

    Article  CAS  Google Scholar 

  • Kondo T, Ezzat S, Asa SL . (2006). Pathogenetic mechanisms in thyroid follicular-cell neoplasia. Nat Rev Cancer 6: 292–306.

    Article  CAS  Google Scholar 

  • Kulkarni S, Heath C, Parker S, Chase A, Iqbal A, Pocock F et al. (2000). Fusion of H4/D10S170 to the platelet-derived growth factor receptor β in BCR-ABL-negative myeloproliferative disorders with a t(5;10)(q33;q21). Cancer Res 60: 3592–3598.

    CAS  Google Scholar 

  • Luciani P, Buci L, Conforti B, Tonacchera M, Agretti P, Elisei R et al. (2003). Expression of cAMP response element-binding protein and sodium iodide symporter in benign non-functioning and malignant thyroid tumours. Eur J Endocrinol 148: 579–586.

    Article  CAS  Google Scholar 

  • Marks P, Rifkind RA, Richon VM, Breslow R, Miller T, Kelly WK . (2001). Histone deacetylases and cancer: causes and therapies. Nat Rev Cancer 1: 194–202.

    Article  CAS  PubMed Central  Google Scholar 

  • Merolla F, Pentimalli F, Pacelli R, Vecchio G, Fusco A, Grieco M et al. (2007). Involvement of H4(D10S170) protein in ATM-dependent response to DNA damage. Oncogene 26: 6167–6175.

    Article  CAS  Google Scholar 

  • Pallante P, Federico A, Berlingieri MT, Bianco M, Ferraro A, Forzati F et al. (2008). Loss of the CBX7 gene expression correlates with a highly malignant phenotype in thyroid cancer. Cancer Res 68: 6770–6778.

    Article  CAS  Google Scholar 

  • Pierantoni GM, Rinaldo C, Esposito F, Mottolese M, Soddu S, Fusco A . (2006). High Mobility Group A1 (HMGA1) proteins interact with p53 and inhibit its apoptotic activity. Cell Death Differ 13: 1554–1563.

    Article  CAS  Google Scholar 

  • Pierantoni GM, Esposito F, Giraud S, Bienvenut WV, Diaz JJ, Fusco A . (2007). Identification of new high mobility group A1 associated proteins. Proteomics 7: 3735–3742.

    Article  CAS  Google Scholar 

  • Pierotti MA, Santoro M, Jenkins RB, Sozzi G, Bongarzone I, Grieco M et al. (1992). Characterization of an inversion on the long arm of chromosome 10 juxtaposing D10S170 and RET and creating the oncogenic sequence RET/PTC. Proc Natl Acad Sci USA 89: 1616–1620.

    Article  CAS  PubMed Central  Google Scholar 

  • Puxeddu E, Zhao G, Stringer JR, Medvedovic M, Moretti S, Fagin JA . (2005). Characterization of novel non-clonal intrachromosomal rearrangements between the H4 and PTEN genes (H4/PTEN) in human thyroid cell lines and papillary thyroid cancer specimens. Mutat Res 570: 17–32.

    Article  CAS  PubMed Central  Google Scholar 

  • Santoro M, Dathan NA, Berlingieri MT, Bongarzone I, Paulin C, Pierotti MA et al. (1994). Molecular characterization of RET/PTC 3: a novel rearranged version of the RET proto-oncogene in a human thyroid papillary carcinoma. Oncogene 9: 509–516.

    CAS  PubMed  Google Scholar 

  • Santoro M, Chiappetta G, Cerrato A, Salvatore D, Zhang L, Manzo G et al. (1996). Development of thyroid papillary carcinomas secondary to tissue-specific expression of the RET/PTC1 oncogene in transgenic mice. Oncogene 12: 1821–1826.

    CAS  PubMed  Google Scholar 

  • Santoro M, Melillo RM, Fusco A . (2006). RET/PTC activation in papillary thyroid carcinoma. Eur J Endocrinol 155: 645–653.

    Article  CAS  Google Scholar 

  • Schwaller J, Anastasiadou E, Cain D, Kutok J, Woyiski S, Willimas IR et al. (2001). CCDC6, a gene frequently rearranged in papillary thyroid carcinomas, is fused to the platelet-derived growth factor receptor β gene in atypical chronic myeloid leukaemia with t(5;10)(q33;q22). Blood 97: 3910–3918.

    Article  CAS  Google Scholar 

  • Sheils OM, O′Leary JJ, Sweeney EC. (2000). Assessment of ret/PTC-1 rearrangements in neoplastic thyroid tissue using TaqMan RT-PCR. J Pathol 192: 32–36.

    Article  CAS  Google Scholar 

  • Talamo F, D′Ambrosio C, Arena S, Del Vecchio P, Ledda L, Zehender G et al. (2003). Proteins from bovine tissues and biological fluids: defining a reference electrophoresis map for liver, kidney, muscle, plasma and red blood cells. Proteomics 3: 440–460.

    Article  CAS  Google Scholar 

  • Terrak M, Kerff F, Langsetmo K, Tao T, Dominguez R . (2004). Structure basis of protein phosphatase1 regulation. Nature 429: 780–784.

    Article  CAS  Google Scholar 

  • Trinkle-Mulcahy L, Lamond AI . (2006). Mitotic phosphatases: no longer silent partners. Curr Opin Cell Biol 18: 623–631.

    Article  CAS  Google Scholar 

  • Viglietto G, Chiappetta G, Martinez-Tello FJ, Fukunaga FH, Tallini G, Rigopoulou D et al. (1995). RET/PTC oncogene activation is an early event in thyroid carcinogenesis. Oncogene 11: 1207–1210.

    CAS  PubMed  Google Scholar 

  • Virshup DM, Shenolikar S . (2009). From promiscuity to precision: protein phosphatases get a makeover. Mol Cell 33: 537–545.

    Article  CAS  Google Scholar 

  • Wang B, Zhang P, Wei Q . (2008). Recent progress on the structure of Ser/Thr protein phosphatases. Sci China C Life Sci 51: 487–494.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Associazione Italiana Ricerca sul Cancro (AIRC) and from the Ministero dell’Istruzione, dell’Università e della Ricerca (MIUR) (MERIT and PRIN 2008 CCPKRP_002). We are grateful to Konstantina Vergadou (Scientific Communication) for editing the text and Mario Berardone for artwork.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Fusco.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leone, V., Mansueto, G., Pierantoni, G. et al. CCDC6 represses CREB1 activity by recruiting histone deacetylase 1 and protein phosphatase 1. Oncogene 29, 4341–4351 (2010). https://doi.org/10.1038/onc.2010.179

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.179

Keywords

This article is cited by

Search

Quick links