Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Evidence for mesenchymal-like sub-populations within squamous cell carcinomas possessing chemoresistance and phenotypic plasticity

Abstract

Variable drug responses among malignant cells within individual tumors may represent a barrier to their eradication using chemotherapy. Carcinoma cells expressing mesenchymal markers resist conventional and epidermal growth factor receptor (EGFR)-targeted chemotherapy. In this study, we evaluated whether mesenchymal-like sub-populations within human squamous cell carcinomas (SCCs) with predominantly epithelial features contribute to overall therapy resistance. We identified a mesenchymal-like subset expressing low E-cadherin (Ecad-lo) and high vimentin within the upper aerodigestive tract SCCs. This subset was both isolated from the cell lines and was identified in xenografts and primary clinical specimens. The Ecad-lo subset contained more low-turnover cells, correlating with resistance to the conventional chemotherapeutic paclitaxel in vitro. Epidermal growth factor induced less stimulation of the mitogen-activated protein kinase and phosphatidylinositol-3-kinase pathways in Ecad-lo cells, which was likely due to lower EGFR expression in this subset and correlated with in vivo resistance to the EGFR-targeted antibody, cetuximab. The Ecad-lo and high E-cadherin subsets were dynamic in phenotype, showing the capacity to repopulate each other from single-cell clones. Taken together, these results provide evidence for a low-turnover, mesenchymal-like sub-population in SCCs with diminished EGFR pathway function and intrinsic resistance to conventional and EGFR-targeted chemotherapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Adam L, Zhong M, Choi W, Qi W, Nicoloso M, Arora A et al. (2009). miR-200 expression regulates epithelial-to-mesenchymal transition in bladder cancer cells and reverses resistance to epidermal growth factor receptor therapy. Clin Cancer Res 15: 5060–5072.

    Article  CAS  Google Scholar 

  • Ansieau S, Bastid J, Doreau A, Morel AP, Bouchet BP, Thomas C et al. (2008). Induction of EMT by twist proteins as a collateral effect of tumor-promoting inactivation of premature senescence. Cancer Cell 14: 79–89.

    CAS  PubMed  Google Scholar 

  • Bianco R, Troiani T, Tortora G, Ciardiello F . (2005). Intrinsic and acquired resistance to EGFR inhibitors in human cancer therapy. Endocr Relat Cancer 12: S159–S171.

    Article  CAS  Google Scholar 

  • Bonner JA, Harari PM, Giralt J, Azarnia N, Shin DM, Cohen RB et al. (2006). Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med 354: 567–578.

    Article  CAS  Google Scholar 

  • Cano A, Perez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG et al. (2000). The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2: 76–83.

    Article  CAS  Google Scholar 

  • Christiansen JJ, Rajasekaran AK . (2006). Reassessing epithelial to mesenchymal transition as a prerequisite for carcinoma invasion and metastasis. Cancer Res 66: 8319–8326.

    Article  CAS  Google Scholar 

  • Chung CH, Ely K, McGavran L, Varella-Garcia M, Parker J, Parker N et al. (2006). Increased epidermal growth factor receptor gene copy number is associated with poor prognosis in head and neck squamous cell carcinomas. J Clin Oncol 24: 4170–4176.

    Article  CAS  Google Scholar 

  • Cooper JB, Cohen EE . (2009). Mechanisms of resistance to EGFR inhibitors in head and neck cancer. Head Neck 31: 1086–1094.

    Article  Google Scholar 

  • Du P, Kibbe WA, Lin SM . (2008). lumi: a pipeline for processing Illumina microarray. Bioinformatics 24: 1547–1548.

    Article  CAS  Google Scholar 

  • Erjala K, Sundvall M, Junttila TT, Zhang N, Savisalo M, Mali P et al. (2006). Signaling via ErbB2 and ErbB3 associates with resistance and epidermal growth factor receptor (EGFR) amplification with sensitivity to EGFR inhibitor gefitinib in head and neck squamous cell carcinoma cells. Clin Cancer Res 12: 4103–4111.

    Article  CAS  Google Scholar 

  • Fang D, Nguyen TK, Leishear K, Finko R, Kulp AN, Hotz S et al. (2005). A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res 65: 9328–9337.

    Article  CAS  Google Scholar 

  • Frederick BA, Helfrich BA, Coldren CD, Zheng D, Chan D, Bunn Jr PA et al. (2007). Epithelial to mesenchymal transition predicts gefitinib resistance in cell lines of head and neck squamous cell carcinoma and non-small cell lung carcinoma. Mol Cancer Ther 6: 1683–1691.

    Article  CAS  Google Scholar 

  • Fuchs BC, Fujii T, Dorfman JD, Goodwin JM, Zhu AX, Lanuti M et al. (2008). Epithelial-to-mesenchymal transition and integrin-linked kinase mediate sensitivity to epidermal growth factor receptor inhibition in human hepatoma cells. Cancer Res 68: 2391–2399.

    Article  CAS  Google Scholar 

  • Gazdar AF . (2009). Activating and resistance mutations of EGFR in non-small-cell lung cancer: role in clinical response to EGFR tyrosine kinase inhibitors. Oncogene 28: S24–S31.

    Article  CAS  Google Scholar 

  • Ghoul A, Serova M, Astorgues-Xerri L, Bieche I, Bousquet G, Varna M et al. (2009). Epithelial-to-mesenchymal transition and resistance to ingenol 3-angelate, a novel protein kinase C modulator, in colon cancer cells. Cancer Res 69: 4260–4269.

    Article  CAS  Google Scholar 

  • Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G et al. (2008). The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 10: 593–601.

    Article  CAS  Google Scholar 

  • Haddad Y, Choi W, McConkey DJ . (2009). Delta-crystallin enhancer binding factor 1 controls the epithelial to mesenchymal transition phenotype and resistance to the epidermal growth factor receptor inhibitor erlotinib in human head and neck squamous cell carcinoma lines. Clin Cancer Res 15: 532–542.

    Article  CAS  Google Scholar 

  • Herbst RS, Arquette M, Shin DM, Dicke K, Vokes EE, Azarnia N et al. (2005). Phase II multicenter study of the epidermal growth factor receptor antibody cetuximab and cisplatin for recurrent and refractory squamous cell carcinoma of the head and neck. J Clin Oncol 23: 5578–5587.

    Article  CAS  Google Scholar 

  • Hugo H, Ackland ML, Blick T, Lawrence MG, Clements JA, Williams ED et al. (2007). Epithelial—mesenchymal and mesenchymal—epithelial transitions in carcinoma progression. J Cell Physiol 213: 374–383.

    Article  CAS  Google Scholar 

  • Kalyankrishna S, Grandis JR . (2006). Epidermal growth factor receptor biology in head and neck cancer. J Clin Oncol 24: 2666–2672.

    Article  CAS  Google Scholar 

  • Kawaguchi Y, Kono K, Mimura K, Mitsui F, Sugai H, Akaike H et al. (2007). Targeting EGFR and HER-2 with cetuximab- and trastuzumab-mediated immunotherapy in oesophageal squamous cell carcinoma. Br J Cancer 97: 494–501.

    Article  CAS  Google Scholar 

  • Kurrey NK, Jalgaonkar SP, Joglekar AV, Ghanate AD, Chaskar PD, Doiphode RY et al. (2009). Snail and slug mediate radioresistance and chemoresistance by antagonizing p53-mediated apoptosis and acquiring a stem-like phenotype in ovarian cancer cells. Stem Cells 27: 2059–2068.

    Article  CAS  Google Scholar 

  • Li C, Iida M, Dunn EF, Ghia AJ, Wheeler DL . (2009a). Nuclear EGFR contributes to acquired resistance to cetuximab. Oncogene 28: 3801–3813 (e-pub ahead of print 17 August 2009).

    Article  CAS  Google Scholar 

  • Li QQ, Xu JD, Wang WJ, Cao XX, Chen Q, Tang F et al. (2009b). Twist1-mediated adriamycin-induced epithelial-mesenchymal transition relates to multidrug resistance and invasive potential in breast cancer cells. Clin Cancer Res 15: 2657–2665.

    Article  CAS  Google Scholar 

  • Li Y, VandenBoom 2nd TG, Kong D, Wang Z, Ali S, Philip PA et al. (2009c). Up-regulation of miR-200 and let-7 by natural agents leads to the reversal of epithelial-to-mesenchymal transition in gemcitabine-resistant pancreatic cancer cells. Cancer Res 69: 6704–6712.

    Article  CAS  Google Scholar 

  • Mancaniello D, Carbonari M . (2008). Immunophenotyping and DNA content analysis of acetone-fixed cells. Curr Protoc Cytom (Chapter 9, Unit 9. 26): 168–174.

  • Mandal M, Myers JN, Lippman SM, Johnson FM, Williams MD, Rayala S et al. (2008). Epithelial to mesenchymal transition in head and neck squamous carcinoma: association of Src activation with E-cadherin down-regulation, vimentin expression, and aggressive tumor features. Cancer 112: 2088–2100.

    Article  CAS  Google Scholar 

  • Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY et al. (2008). The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133: 704–715.

    Article  CAS  Google Scholar 

  • Okano J, Gaslightwala I, Birnbaum MJ, Rustgi AK, Nakagawa H . (2000). Akt/protein kinase B isoforms are differentially regulated by epidermal growth factor stimulation. J Biol Chem 275: 30934–30942.

    Article  CAS  Google Scholar 

  • Opitz OG, Jenkins TD, Rustgi AK . (1998). Transcriptional regulation of the differentiation-linked human K4 promoter is dependent upon esophageal-specific nuclear factors. J Biol Chem 273: 23912–23921.

    Article  CAS  Google Scholar 

  • Peinado H, Olmeda D, Cano A . (2007). Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer 7: 415–428.

    Article  CAS  Google Scholar 

  • Posner MR, Hershock DM, Blajman CR, Mickiewicz E, Winquist E, Gorbounova V et al. (2007). Cisplatin and fluorouracil alone or with docetaxel in head and neck cancer. N Engl J Med 357: 1705–1715.

    Article  CAS  Google Scholar 

  • Rheinwald JG, Beckett MA . (1981). Tumorigenic keratinocyte lines requiring anchorage and fibroblast support cultures from human squamous cell carcinomas. Cancer Res 41: 1657–1663.

    CAS  PubMed  Google Scholar 

  • Shackleton M, Quintana E, Fearon ER, Morrison SJ . (2009). Heterogeneity in cancer: cancer stem cells versus clonal evolution. Cell 138: 822–829.

    Article  CAS  Google Scholar 

  • Shrader M, Pino MS, Brown G, Black P, Adam L, Bar-Eli M et al. (2007). Molecular correlates of gefitinib responsiveness in human bladder cancer cells. Mol Cancer Ther 6: 277–285.

    Article  CAS  Google Scholar 

  • Smalley KS, Brafford P, Haass NK, Brandner JM, Brown E, Herlyn M . (2005). Up-regulated expression of zonula occludens protein-1 in human melanoma associates with N-cadherin and contributes to invasion and adhesion. Am J Pathol 166: 1541–1554.

    Article  CAS  Google Scholar 

  • Smalley KS, Haass NK, Brafford PA, Lioni M, Flaherty KT, Herlyn M . (2006). Multiple signaling pathways must be targeted to overcome drug resistance in cell lines derived from melanoma metastases. Mol Cancer Ther 5: 1136–1144.

    Article  CAS  Google Scholar 

  • Smyth GK . (2004). Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3 (Article 3): 1–25

    Article  Google Scholar 

  • Strauss R, Sova P, Liu Y, Li ZY, Tuve S, Pritchard D et al. (2009). Epithelial phenotype confers resistance of ovarian cancer cells to oncolytic adenoviruses. Cancer Res 69: 5115–5125.

    Article  CAS  Google Scholar 

  • Tarin D, Thompson EW, Newgreen DF . (2005). The fallacy of epithelial mesenchymal transition in neoplasia. Cancer Res 65: 5996–6000, (Discussion 6000-1).

    Article  CAS  Google Scholar 

  • Temam S, Kawaguchi H, El-Naggar AK, Jelinek J, Tang H, Liu DD et al. (2007). Epidermal growth factor receptor copy number alterations correlate with poor clinical outcome in patients with head and neck squamous cancer. J Clin Oncol 25: 2164–2170.

    Article  CAS  Google Scholar 

  • Thomson S, Buck E, Petti F, Griffin G, Brown E, Ramnarine N et al. (2005). Epithelial to mesenchymal transition is a determinant of sensitivity of non-small-cell lung carcinoma cell lines and xenografts to epidermal growth factor receptor inhibition. Cancer Res 65: 9455–9462.

    Article  CAS  Google Scholar 

  • Vermorken JB, Remenar E, van Herpen C, Gorlia T, Mesia R, Degardin M et al. (2007). Cisplatin, fluorouracil, and docetaxel in unresectable head and neck cancer. N Engl J Med 357: 1695–1704.

    Article  CAS  Google Scholar 

  • Wang Z, Li Y, Kong D, Banerjee S, Ahmad A, Azmi AS et al. (2009). Acquisition of epithelial-mesenchymal transition phenotype of gemcitabine-resistant pancreatic cancer cells is linked with activation of the notch signaling pathway. Cancer Res 69: 2400–2407.

    Article  CAS  Google Scholar 

  • Wu K, Bonavida B . (2009). The activated NF-kappaB-Snail-RKIP circuitry in cancer regulates both the metastatic cascade and resistance to apoptosis by cytotoxic drugs. Crit Rev Immunol 29: 241–254.

    Article  CAS  Google Scholar 

  • Yang AD, Fan F, Camp ER, van Buren G, Liu W, Somcio R et al. (2006). Chronic oxaliplatin resistance induces epithelial-to-mesenchymal transition in colorectal cancer cell lines. Clin Cancer Res 12: 4147–4153.

    Article  CAS  Google Scholar 

  • Yauch RL, Januario T, Eberhard DA, Cavet G, Zhu W, Fu L et al. (2005). Epithelial versus mesenchymal phenotype determines in vitro sensitivity and predicts clinical activity of erlotinib in lung cancer patients. Clin Cancer Res 11: 8686–8698.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge Fredrick Keeny in the Wistar Institute Microscopy Core for assistance with digital image processing and Ademi Santiago-Walker, PhD for critical review of the paper. This work is supported by grants from the NIH (NCI P01 CA098101 to M Herlyn, A Rustgi and D Basu), the Wistar Cancer Center Core Grant (P30 CA10815), and the American Cancer Society (IRG-78-002-30 to D Basu). This work is also supported in part with resources and use of facilities at the Philadelphia VA Medical Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Basu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Basu, D., Nguyen, TT., Montone, K. et al. Evidence for mesenchymal-like sub-populations within squamous cell carcinomas possessing chemoresistance and phenotypic plasticity. Oncogene 29, 4170–4182 (2010). https://doi.org/10.1038/onc.2010.170

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.170

Keywords

This article is cited by

Search

Quick links