Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

An oncogenic role of eIF3e/INT6 in human breast cancer

Abstract

Altered expression of the eukaryotic translation initiation factor 3 (eIF3) subunit eIF3e/INT6 has been described in various types of human cancer, but the nature of its involvement in tumorigenesis is not yet clear. Using immunohistochemical analysis of 81 primary breast cancers, we found that high tumor grade correlated significantly with elevated cytoplasmic eIF3e level in epithelial tumor cells. Analysis of protein synthesis after siRNA-mediated knockdown in breast cancer cell lines indicated that eIF3e is not required for bulk translation. Microarray analysis of total and polysomal RNAs nonetheless identified distinct sets of mRNAs regulated either positively or negatively by eIF3e; functional classification of these revealed a marked enrichment of genes involved in cell proliferation, invasion and apoptosis. Validated mRNA targets regulated positively at the translational level by eIF3e included urokinase-type plasminogen activator and apoptotic regulator BCL-XL, whereas synthesis of proteins including the mitotic checkpoint component MAD2L1 was negatively regulated. Finally, eIF3e-depleted breast carcinoma cells showed reduced in vitro invasion and proliferation. Taken together, our study data suggest that eIF3e has a positive role in breast cancer progression. It regulates the translation, and in some cases abundance, of mRNAs involved in key aspects of cancer cell biology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Ahlemann M, Zeidler R, Lang S, Mack B, Munz M, Gires O . (2006). Carcinoma-associated eIF3i overexpression facilitates mTOR-dependent growth transformation. Mol Carcinog 45: 957–967.

    Article  CAS  PubMed  Google Scholar 

  • Asano K, Merrick WC, Hershey JW . (1997). The translation initiation factor eIF3-p48 subunit is encoded by int-6, a site of frequent integration by the mouse mammary tumor virus genome. J Biol Chem 272: 23477–23480.

    Article  CAS  PubMed  Google Scholar 

  • Bandyopadhyay A, Matsumoto T, Maitra U . (2000). Fission yeast Int6 is not essential for global translation initiation, but deletion of int6(+) causes hypersensitivity to caffeine and affects spore formation. Mol Biol Cell 11: 4005–4018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benne R, Hershey JW . (1978). The mechanism of action of protein synthesis initiation factors from rabbit reticulocytes. J Biol Chem 253: 3078–3087.

    CAS  PubMed  Google Scholar 

  • Bramham CR, Wells DG . (2007). Dendritic mRNA: transport, translation and function. Nat Rev Neurosci 8: 776–789.

    Article  CAS  PubMed  Google Scholar 

  • Bubendorf L, Nocito A, Moch H, Sauter G . (2001). Tissue microarray (TMA) technology: miniaturized pathology archives for high-throughput in situ studies. J Pathol 195: 72–79.

    Article  CAS  PubMed  Google Scholar 

  • Buchsbaum S, Morris C, Bochard V, Jalinot P . (2007). Human INT6 interacts with MCM7 and regulates its stability during S phase of the cell cycle. Oncogene 26: 5132–5144.

    Article  CAS  PubMed  Google Scholar 

  • Buratti E, Tisminetzky S, Zotti M, Baralle FE . (1998). Functional analysis of the interaction between HCV 5′UTR and putative subunits of eukaryotic translation initiation factor eIF3. Nucleic Acids Res 26: 3179–3187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buttitta F, Martella C, Barassi F, Felicioni L, Salvatore S, Rosini S et al. (2005). Int6 expression can predict survival in early-stage non-small cell lung cancer patients. Clin Cancer Res 11: 3198–3204.

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Uchida K, Endler A, Shibasaki F . (2007). Mammalian tumor suppressor Int6 specifically targets hypoxia inducible factor 2{alpha} for degradation by hypoxia- and pVHL-independent regulation. J Biol Chem 282: 12707–12716.

    Article  CAS  PubMed  Google Scholar 

  • Crane R, Craig R, Murray R, Dunand-Sauthier I, Humphrey T, Norbury C . (2000). A fission yeast homolog of Int-6, the mammalian oncoprotein and eIF3 subunit, induces drug resistance when overexpressed. Mol Biol Cell 11: 3993–4003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dennis Jr G, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC et al. (2003). DAVID: database for annotation, visualization, and integrated discovery. Genome Biol 4: P3.

    Article  PubMed  Google Scholar 

  • Dong Z, Zhang JT . (2006). Initiation factor eIF3 and regulation of mRNA translation, cell growth, and cancer. Crit Rev Oncol Hematol 59: 169–180.

    Article  PubMed  Google Scholar 

  • Grzmil M, Whiting D, Maule J, Anastasaki C, Amatruda JF, Kelsh RN et al. (2007). The INT6 cancer gene and MEK signaling pathways converge during zebrafish development. PLoS One 2: e959.

    Article  PubMed  PubMed Central  Google Scholar 

  • Han B, Nakamura M, Mori I, Nakamura Y, Kakudo K . (2005). Urokinase-type plasminogen activator system and breast cancer (review). Oncol Rep 14: 105–112.

    CAS  PubMed  Google Scholar 

  • Hinnebusch AG . (2006). eIF3: a versatile scaffold for translation initiation complexes. Trends Biochem Sci 31: 553–562.

    Article  CAS  PubMed  Google Scholar 

  • Holcik M, Sonenberg N . (2005). Translational control in stress and apoptosis. Nat Rev Mol Cell Biol 6: 318–327.

    Article  CAS  PubMed  Google Scholar 

  • Jivotovskaya AV, Valasek L, Hinnebusch AG, Nielsen KH . (2006). Eukaryotic translation initiation factor 3 (eIF3) and eIF2 can promote mRNA binding to 40S subunits independently of eIF4G in yeast. Mol Cell Biol 26: 1355–1372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez de Quinto S, Lafuente E, Martinez-Salas E . (2001). IRES interaction with translation initiation factors: functional characterization of novel RNA contacts with eIF3, eIF4B, and eIF4GII. RNA 7: 1213–1226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mack DL, Boulanger CA, Callahan R, Smith GH . (2007). Expression of truncated Int6/eIF3e in mammary alveolar epithelium leads to persistent hyperplasia and tumorigenesis. Breast Cancer Res 9: R42.

    Article  PubMed  PubMed Central  Google Scholar 

  • Marchetti A, Buttitta F, Miyazaki S, Gallahan D, Smith GH, Callahan R . (1995). Int-6, a highly conserved, widely expressed gene, is mutated by mouse mammary tumor virus in mammary preneoplasia. J Virol 69: 1932–1938.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marchetti A, Buttitta F, Pellegrini S, Bertacca G, Callahan R . (2001). Reduced expression of INT-6/eIF3-p48 in human tumors. Int J Oncol 18: 175–179.

    CAS  PubMed  Google Scholar 

  • Mavrakis KJ, Wendel HG . (2008). Translational control and cancer therapy. Cell Cycle 7: 2791–2794.

    Article  CAS  PubMed  Google Scholar 

  • Mayeur GL, Hershey JW . (2002). Malignant transformation by the eukaryotic translation initiation factor 3 subunit p48 (eIF3e). FEBS Lett 514: 49–54.

    Article  CAS  PubMed  Google Scholar 

  • Merrick WC . (1979). Evidence that a single GTP is used in the formation of 80 S initiation complexes. J Biol Chem 254: 3708–3711.

    CAS  PubMed  Google Scholar 

  • Michel LS, Liberal V, Chatterjee A, Kirchwegger R, Pasche B, Gerald W et al. (2001). MAD2 haplo-insufficiency causes premature anaphase and chromosome instability in mammalian cells. Nature 409: 355–359.

    Article  CAS  PubMed  Google Scholar 

  • Minn AJ, Rudin CM, Boise LH, Thompson CB . (1995). Expression of bcl-xL can confer a multidrug resistance phenotype. Blood 86: 1903–1910.

    CAS  PubMed  Google Scholar 

  • Miyazaki S, Imatani A, Ballard L, Marchetti A, Buttitta F, Albertsen H et al. (1997). The chromosome location of the human homolog of the mouse mammary tumor-associated gene INT6 and its status in human breast carcinomas. Genomics 46: 155–158.

    Article  CAS  PubMed  Google Scholar 

  • Morris C, Jalinot P . (2005). Silencing of human Int-6 impairs mitosis progression and inhibits cyclin B-Cdk1 activation. Oncogene 24: 1203–1211.

    Article  CAS  PubMed  Google Scholar 

  • Paquin N, Chartrand P . (2008). Local regulation of mRNA translation: new insights from the bud. Trends Cell Biol 18: 105–111.

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen SB, Kordon E, Callahan R, Smith GH . (2001). Evidence for the transforming activity of a truncated Int6 gene, in vitro. Oncogene 20: 5291–5301.

    Article  CAS  PubMed  Google Scholar 

  • Rencus-Lazar S, Amir Y, Wu J, Chien CT, Chamovitz DA, Segal D . (2008). The proto-oncogene Int6 is essential for neddylation of Cul1 and Cul3 in Drosophila. PLoS One 3: e2239.

    Article  PubMed  PubMed Central  Google Scholar 

  • Saal LH, Troein C, Vallon-Christersson J, Gruvberger S, Borg A, Peterson C . (2002). BioArray Software Environment (BASE): a platform for comprehensive management and analysis of microarray data. Genome Biol 3: software0003.1–software0003.6.

    Article  Google Scholar 

  • Savinainen KJ, Helenius MA, Lehtonen HJ, Visakorpi T . (2006). Overexpression of EIF3S3 promotes cancer cell growth. Prostate 66: 1144–1150.

    Article  CAS  PubMed  Google Scholar 

  • Siridechadilok B, Fraser CS, Hall RJ, Doudna JA, Nogales E . (2005). Structural roles for human translation factor eIF3 in initiation of protein synthesis. Science 310: 1513–1515.

    Article  CAS  PubMed  Google Scholar 

  • Sotillo R, Hernando E, Diaz-Rodriguez E, Teruya-Feldstein J, Cordon-Cardo C, Lowe SW et al. (2007). Mad2 overexpression promotes aneuploidy and tumorigenesis in mice. Cancer Cell 11: 9–23.

    Article  CAS  PubMed  Google Scholar 

  • Thumma SC, Kratzke RA . (2007). Translational control: a target for cancer therapy. Cancer Lett 258: 1–8.

    Article  CAS  PubMed  Google Scholar 

  • Traicoff JL, Chung JY, Braunschweig T, Mazo I, Shu Y, Ramesh A et al. (2007). Expression of eIF3-p48/INT6, TID1 and Patched in cancer, a profiling of multiple tumor types and correlation of expression. J Biomed Sci 14: 395–405.

    Article  CAS  PubMed  Google Scholar 

  • Udagawa T, Nemoto N, Wilkinson CR, Narashimhan J, Jiang L, Watt S et al. (2008). Int6/eIF3e promotes general translation and Atf1 abundance to modulate Sty1 MAPK-dependent stress response in fission yeast. J Biol Chem 283: 22063–22075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • von Arnim AG, Chamovitz DA . (2003). Protein homeostasis: a degrading role for Int6/eIF3e. Curr Biol 13: R323–R325.

    Article  CAS  PubMed  Google Scholar 

  • Watkins SJ, Norbury CJ . (2002). Translation initiation and its deregulation during tumorigenesis. Br J Cancer 86: 1023–1027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watkins SJ, Norbury CJ . (2004). Cell cycle-related variation in subcellular localization of eIF3e/INT6 in human fibroblasts. Cell Prolif 37: 149–160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wendel HG, Silva RL, Malina A, Mills JR, Zhu H, Ueda T et al. (2007). Dissecting eIF4E action in tumorigenesis. Genes Dev 21: 3232–3237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winters ZE, Hunt NC, Bradburn MJ, Royds JA, Turley H, Harris AL et al. (2001). Subcellular localisation of cyclin B, Cdc2 and p21(WAF1/CIP1) in breast cancer association with prognosis. Eur J Cancer 37: 2405–2412.

    Article  CAS  PubMed  Google Scholar 

  • Yen HC, Gordon C, Chang EC . (2003). Schizosaccharomyces pombe Int6 and Ras homologs regulate cell division and mitotic fidelity via the pro. Cell 112: 207–217.

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Pan X, Hershey JW . (2007). Individual overexpression of five subunits of human translation initiation factor eIF3 promotes malignant transformation of immortal fibroblast cells. J Biol Chem 282: 5790–5800.

    Article  CAS  PubMed  Google Scholar 

  • Zhou C, Arslan F, Wee S, Krishnan S, Ivanov AR, Oliva A et al. (2005). PCI proteins eIF3e and eIF3m define distinct translation initiation factor 3 complexes. BMC Biol 3: 14.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Ben Thomas and Sasha Akoulitchev for help and advice with 2D liquid chromatography, Cheng Han for help with the statistical analysis, Dan Scott and other members of the laboratory for their comments on the article. This work was supported by Cancer Research UK, the Association for International Cancer Research and the Wellcome Trust (through grant 075491/Z/04 to JR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C J Norbury.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grzmil, M., Rzymski, T., Milani, M. et al. An oncogenic role of eIF3e/INT6 in human breast cancer. Oncogene 29, 4080–4089 (2010). https://doi.org/10.1038/onc.2010.152

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.152

Keywords

This article is cited by

Search

Quick links