Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Functional transition of Pak proto-oncogene during early evolution of metazoans

Abstract

Proto-oncogenes encode signaling molecular switches regulating cellular homeostasis in metazoans, and can be converted to oncogenes by gain-of-function mutations. To address the molecular basis for development of the regulatory system of proto-oncogenes during evolution, we screened for ancestral proto-oncogenes from the unicellular choanoflagellate Monosiga ovata by monitoring their transforming activities, and isolated a Pak gene ortholog encoding a serine/threonine kinase as a ‘primitive oncogene’. We also cloned Pak orthologs from fungi and the multicellular sponge Ephydatia fluviatilis, and compared their regulatory features with that of M. ovata Pak (MoPak). MoPak is constitutively active and induces cell transformation in mammalian fibroblasts, although the Pak orthologs from multicellular animals are strictly regulated. Analyses of Pak mutants revealed that structural alteration of the auto-inhibitory domain (AID) of MoPak confers higher constitutive kinase activity, as well as greater binding ability to Rho family GTPases than the multicellular Paks, and this structural alteration is responsible for cell transformation and disruption of multicellular tissue organization. These results show that maturation of AID function was required for the development of the strict regulatory system of the Pak proto-oncogene, and suggest a potential link between the establishment of the regulatory system of proto-oncogenes and metazoan evolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  • Akagi T, Shishido T, Murata K, Hanafusa H . (2000). v-Crk activates the phosphoinositide 3-kinase/AKT pathway in transformation. Proc Natl Acad Sci USA 97: 7290–7295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bishop JM . (1981). Enemies within: the genesis of retrovirus oncogenes. Cell 23: 5–6.

    Article  CAS  PubMed  Google Scholar 

  • Bokoch GM . (2003). Biology of the p21-activated kinases. Annu Rev Biochem 72: 743–781.

    Article  CAS  PubMed  Google Scholar 

  • Brown JL, Stowers L, Baer M, Trejo J, Coughlin S, Chant J . (1996). Human Ste20 homologue hPAK1 links GTPases to the JNK MAP kinase pathway. Curr Biol 6: 598–605.

    Article  CAS  PubMed  Google Scholar 

  • Brown MT, Cooper JA . (1996). Regulation, substrates and functions of src. Biochim Biophys Acta 1287: 121–149.

    PubMed  Google Scholar 

  • Chung CY, Firtel RA . (1999). PAKa, a putative PAK family member, is required for cytokinesis and the regulation of the cytoskeleton in Dictyostelium discoideum cells during chemotaxis. J Cell Biol 147: 559–576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Croce CM . (2008). Oncogenes and cancer. N Engl J Med 358: 502–511.

    Article  CAS  PubMed  Google Scholar 

  • Debnath J, Muthuswamy SK, Brugge JS . (2003). Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods 30: 256–268.

    Article  CAS  PubMed  Google Scholar 

  • Frost JA, Khokhlatchev A, Stippec S, White MA, Cobb MH . (1998). Differential effects of PAK1-activating mutations reveal activity-dependent and -independent effects on cytoskeletal regulation. J Biol Chem 273: 28191–28198.

    Article  CAS  PubMed  Google Scholar 

  • Hibberd DJ . (1975). Observations on the ultrastructure of the choanoflagellate Codosiga botrytis (Ehr.) Saville-Kent with special reference to the flagellar apparatus. J Cell Sci 17: 191–219.

    CAS  PubMed  Google Scholar 

  • Higuchi M, Onishi K, Kikuchi C, Gotoh Y . (2008). Scaffolding function of PAK in the PDK1-Akt pathway. Nat Cell Biol 10: 1356–1364.

    Article  CAS  PubMed  Google Scholar 

  • Hofmann C, Shepelev M, Chernoff J . (2004). The genetics of Pak. J Cell Sci 117: 4343–4354.

    Article  CAS  PubMed  Google Scholar 

  • Imamoto A, Soriano P . (1993). Disruption of the Csk gene, encoding a negative regulator of Src family tyrosine kinases, leads to neural tube defects and embryonic lethality in mice. Cell 73: 1117–1124.

    Article  CAS  PubMed  Google Scholar 

  • Johnston RN, Pai SB, Pai RB . (1992). The origin of the cancer cell: oncogeny reverses phylogeny. Biochem Cell Biol 70: 831–834.

    Article  CAS  PubMed  Google Scholar 

  • King N, Hittinger CT, Carroll SB . (2003). Evolution of key cell signaling and adhesion protein families predates animal origins. Science 301: 361–363.

    Article  CAS  PubMed  Google Scholar 

  • King N, Westbrook MJ, Young SL, Kuo A, Abedin M, Chapman J et al. (2008). The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans. Nature 451: 783–788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knaus UG, Wang Y, Reilly AM, Warnock D, Jackson JH . (1998). Structural requirements for PAK activation by Rac GTPases. J Biol Chem 273: 21512–21518.

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Gururaj AE, Barnes CJ . (2006). p21-activated kinases in cancer. Nat Rev Cancer 6: 459–471.

    Article  CAS  PubMed  Google Scholar 

  • Lang BF, O'Kelly C, Nerad T, Gray MW, Burger G . (2002). The closest unicellular relatives of animals. Curr Biol 12: 1773–1778.

    Article  CAS  PubMed  Google Scholar 

  • Lei M, Lu W, Meng W, Parrini MC, Eck MJ, Mayer BJ et al. (2000). Structure of PAK1 in an autoinhibited conformation reveals a multistage activation switch. Cell 102: 387–397.

    Article  CAS  PubMed  Google Scholar 

  • Li W, Young SL, King N, Miller WT . (2008). Signaling properties of a non-metazoan Src kinase and the evolutionary history of Src negative regulation. J Biol Chem 283: 15491–15501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lozano E, Frasa MA, Smolarczyk K, Knaus UG, Braga VM . (2008). PAK is required for the disruption of E-cadherin adhesion by the small GTPase Rac. J Cell Sci 121: 933–938.

    Article  CAS  PubMed  Google Scholar 

  • Manning G, Young SL, Miller WT, Zhai Y . (2008). The protist, Monosiga brevicollis, has a tyrosine kinase signaling network more elaborate and diverse than found in any known metazoan. Proc Natl Acad Sci USA 105: 9674–9679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manser E, Leung T, Salihuddin H, Zhao ZS, Lim L . (1994). A brain serine/threonine protein kinase activated by Cdc42 and Rac1. Nature 367: 40–46.

    Article  CAS  PubMed  Google Scholar 

  • Morita S, Kojima T, Kitamura T . (2000). Plat-E: an efficient and stable system for transient packaging of retroviruses. Gene Ther 7: 1063–1066.

    Article  CAS  PubMed  Google Scholar 

  • Nada S, Okada M, MacAuley A, Cooper JA, Nakagawa H . (1991). Cloning of a complementary DNA for a protein-tyrosine kinase that specifically phosphorylates a negative regulatory site of p60c-src. Nature 351: 69–72.

    Article  CAS  PubMed  Google Scholar 

  • Nada S, Yagi T, Takeda H, Tokunaga T, Nakagawa H, Ikawa Y et al. (1993). Constitutive activation of Src family kinases in mouse embryos that lack Csk. Cell 73: 1125–1135.

    Article  CAS  PubMed  Google Scholar 

  • O'Sullivan GC, Tangney M, Casey G, Ambrose M, Houston A, Barry OP . (2007). Modulation of p21-activated kinase 1 alters the behavior of renal cell carcinoma. Int J Cancer 121: 1930–1940.

    Article  CAS  PubMed  Google Scholar 

  • Parrini MC, Lei M, Harrison SC, Mayer BJ . (2002). Pak1 kinase homodimers are autoinhibited in trans and dissociated upon activation by Cdc42 and Rac1. Mol Cell 9: 73–83.

    Article  CAS  PubMed  Google Scholar 

  • Philippe H, Snell EA, Bapteste E, Lopez P, Holland PW, Casane D . (2004). Phylogenomics of eukaryotes: impact of missing data on large alignments. Mol Biol Evol 21: 1740–1752.

    Article  CAS  PubMed  Google Scholar 

  • Reeder MK, Serebriiskii IG, Golemis EA, Chernoff J . (2001). Analysis of small GTPase signaling pathways using p21-activated kinase mutants that selectively couple to Cdc42. J Biol Chem 276: 40606–40613.

    Article  CAS  PubMed  Google Scholar 

  • Segawa Y, Suga H, Iwabe N, Oneyama C, Akagi T, Miyata T et al. (2006). Functional development of Src tyrosine kinases during evolution from a unicellular ancestor to multicellular animals. Proc Natl Acad Sci USA 103: 12021–12026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sells MA, Knaus UG, Bagrodia S, Ambrose DM, Bokoch GM, Chernoff J . (1997). Human p21-activated kinase (Pak1) regulates actin organization in mammalian cells. Curr Biol 7: 202–210.

    Article  CAS  PubMed  Google Scholar 

  • Suga H, Katoh K, Miyata T . (2001). Sponge homologs of vertebrate protein tyrosine kinases and frequent domain shufflings in the early evolution of animals before the parazoan-eumetazoan split. Gene 280: 195–201.

    Article  CAS  PubMed  Google Scholar 

  • Suga H, Sasaki G, Kuma K, Nishiyori H, Hirose N, Su ZH et al. (2008). Ancient divergence of animal protein tyrosine kinase genes demonstrated by a gene family tree including choanoflagellate genes. FEBS Lett 582: 815–818.

    Article  CAS  PubMed  Google Scholar 

  • Tang Y, Chen Z, Ambrose D, Liu J, Gibbs JB, Chernoff J et al. (1997). Kinase-deficient Pak1 mutants inhibit Ras transformation of Rat-1 fibroblasts. Mol Cell Biol 17: 4454–4464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Todd R, Wong DT . (1999). Oncogenes. Anticancer Res 19: 4729–4746.

    CAS  PubMed  Google Scholar 

  • Vadlamudi RK, Adam L, Wang RA, Mandal M, Nguyen D, Sahin A et al. (2000). Regulatable expression of p21-activated kinase-1 promotes anchorage-independent growth and abnormal organization of mitotic spindles in human epithelial breast cancer cells. J Biol Chem 275: 36238–36244.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Drs M Matsuda, T Akagi, T Hishida, M Yutsudo and S Morita for their generous gifts of reagents. This work was supported by Grants-in-Aids for Scientific Research on Priority Areas ‘Cancer’ and ‘Comparative Genomics’, from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Okada.

Ethics declarations

Competing interests

The authors declare no conflicts of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watari, A., Iwabe, N., Masuda, H. et al. Functional transition of Pak proto-oncogene during early evolution of metazoans. Oncogene 29, 3815–3826 (2010). https://doi.org/10.1038/onc.2010.148

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.148

Keywords

This article is cited by

Search

Quick links