Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Mitochondrial pyrimidine nucleotide carrier (PNC1) regulates mitochondrial biogenesis and the invasive phenotype of cancer cells

Abstract

The insulin-like growth factor (IGF-I) signalling pathway is essential for metabolism, cell growth and survival. It induces expression of the mitochondrial pyrimidine nucleotide carrier 1 (PNC1) in transformed cells, but the consequences of this for cell phenotype are unknown. Here we show that PNC1 is necessary to maintain mitochondrial function by controlling mitochondrial DNA replication and the ratio of transcription of mitochondrial genes relative to nuclear genes. PNC1 suppression causes reduced oxidative phosphorylation and leakage of reactive oxygen species (ROS), which activates the AMPK-PGC1α signalling pathway and promotes mitochondrial biogenesis. Overexpression of PNC1 suppresses mitochondrial biogenesis. Suppression of PNC1 causes a profound ROS-dependent epithelial–mesenchymal transition (EMT), whereas overexpression of PNC1 suppresses both basal EMT and induction of EMT by TGF-β. Overall, our findings indicate that PNC1 is essential for mitochondria maintenance and suggest that its induction by IGF-I facilitates cell growth whereas protecting cells from an ROS-promoted differentiation programme that arises from mitochondrial dysfunction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Ayllon V, O'Connor R . (2007). PBK/TOPK promotes tumour cell proliferation through p38 MAPK activity and regulation of the DNA damage response. Oncogene 26: 3451–3461.

    Article  CAS  Google Scholar 

  • Brandon M, Baldi P, Wallace DC . (2006). Mitochondrial mutations in cancer. Oncogene 25: 4647–4662.

    Article  CAS  Google Scholar 

  • Butow RA, Avadhani NG . (2004). Mitochondrial signaling: the retrograde response. Mol Cell 14: 1–15.

    Article  CAS  Google Scholar 

  • Chatterjee A, Mambo E, Sidransky D . (2006). Mitochondrial DNA mutations in human cancer. Oncogene 25: 4663–4674.

    Article  CAS  Google Scholar 

  • Copeland WC . (2008). Inherited mitochondrial diseases of DNA replication. Annu Rev Med 59: 131–146.

    Article  CAS  Google Scholar 

  • Deberardinis RJ, Sayed N, Ditsworth D, Thompson CB . (2008). Brick by brick: metabolism and tumor cell growth. Curr Opin Genet Dev 18: 54–61.

    Article  CAS  Google Scholar 

  • Elstrom RL, Bauer DE, Buzzai M, Karnauskas R, Harris MH, Plas DR et al. (2004). Akt stimulates aerobic glycolysis in cancer cells. Cancer Res 64: 3892–3899.

    Article  CAS  Google Scholar 

  • Falkenberg M, Larsson NG, Gustafsson CM . (2007). DNA replication and transcription in mammalian mitochondria. Annu Rev Biochem 76: 679–699.

    Article  CAS  Google Scholar 

  • Ferraro D, Corso S, Fasano E, Panieri E, Santangelo R, Borrello S et al. (2006). Pro-metastatic signaling by c-Met through RAC-1 and reactive oxygen species (ROS). Oncogene 25: 3689–3698.

    Article  CAS  Google Scholar 

  • Finkel T . (2000). Redox-dependent signal transduction. FEBS Lett 476: 52–54.

    Article  CAS  Google Scholar 

  • Floyd S, Favre C, Lasorsa FM, Leahy M, Trigiante G, Stroebel P et al. (2007). The insulin-like growth factor-I mTOR signaling pathway induces the mitochondrial pyrimidine nucleotide carrier to promote cell growth. Mol Biol Cell 18: 3545–3555.

    Article  CAS  Google Scholar 

  • Gatenby RA, Gillies RJ . (2004). Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4: 891–899.

    Article  CAS  Google Scholar 

  • Hajduch E, Alessi DR, Hemmings BA, Hundal HS . (1998). Constitutive activation of protein kinase B alpha by membrane targeting promotes glucose and system A amino acid transport, protein synthesis, and inactivation of glycogen synthase kinase 3 in L6 muscle cells. Diabetes 47: 1006–1013.

    Article  CAS  Google Scholar 

  • Huang C, Thirone AC, Huang X, Klip A . (2005). Differential contribution of insulin receptor substrates 1 versus 2 to insulin signaling and glucose uptake in l6 myotubes. J Biol Chem 280: 19426–19435.

    Article  CAS  Google Scholar 

  • Hynes J, O′Riordan TC, Zhdanov AV, Uray G, Will Y, Papkovsky DB . (2009). In vitro analysis of cell metabolism using a long-decay pH-sensitive lanthanide probe and extracellular acidification assay. Anal Biochem 390: 21–28.

    Article  CAS  Google Scholar 

  • Irrcher I, Ljubicic V, Kirwan AF, Hood DA . (2008). AMP-activated protein kinase-regulated activation of the PGC-1alpha promoter in skeletal muscle cells. PLoS ONE 3: e3614.

    Article  Google Scholar 

  • Ishikawa K, Takenaga K, Akimoto M, Koshikawa N, Yamaguchi A, Imanishi H et al. (2008). ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis. Science 320: 661–664.

    Article  CAS  Google Scholar 

  • Jager S, Handschin C, St-Pierre J, Spiegelman BM . (2007). AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc Natl Acad Sci USA 104: 12017–12022.

    Article  Google Scholar 

  • Jazayeri M, Andreyev A, Will Y, Ward M, Anderson CM, Clevenger W . (2003). Inducible expression of a dominant negative DNA polymerase-gamma depletes mitochondrial DNA and produces a rho0 phenotype. J Biol Chem 278: 9823–9830.

    Article  CAS  Google Scholar 

  • Jeng JY, Yeh TS, Lee JW, Lin SH, Fong TH, Hsieh RH . (2008). Maintenance of mitochondrial DNA copy number and expression are essential for preservation of mitochondrial function and cell growth. J Cell Biochem 103: 347–357.

    Article  CAS  Google Scholar 

  • Jones RG, Plas DR, Kubek S, Buzzai M, Mu J, Xu Y et al. (2005). AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol Cell 18: 283–293.

    Article  CAS  Google Scholar 

  • Jones RG, Thompson CB . (2009). Tumor suppressors and cell metabolism: a recipe for cancer growth. Genes Dev 23: 537–548.

    Article  CAS  Google Scholar 

  • Klaunig JE, Xu Y, Isenberg JS, Bachowski S, Kolaja KL, Jiang J et al. (1998). The role of oxidative stress in chemical carcinogenesis. Environ Health Perspect 106 (Suppl 1): 289–295.

    Article  CAS  Google Scholar 

  • Korhonen JA, Gaspari M, Falkenberg M . (2003). TWINKLE Has 5′->3′ DNA helicase activity and is specifically stimulated by mitochondrial single-stranded DNA-binding protein. J Biol Chem 278: 48627–48632.

    Article  CAS  Google Scholar 

  • Lage R, Dieguez C, Vidal-Puig A, Lopez M . (2008). AMPK: a metabolic gauge regulating whole-body energy homeostasis. Trends Mol Med 14: 539–549.

    Article  CAS  Google Scholar 

  • Marroquin LD, Hynes J, Dykens JA, Jamieson JD, Will Y . (2007). Circumventing the Crabtree effect: replacing media glucose with galactose increases susceptibility of HepG2 cells to mitochondrial toxicants. Toxicol Sci 97: 539–547.

    Article  CAS  Google Scholar 

  • Marshall S . (2006). Role of insulin, adipocyte hormones, and nutrient-sensing pathways in regulating fuel metabolism and energy homeostasis: a nutritional perspective of diabetes, obesity, and cancer. Sci STKE 2006: re7.

    Article  Google Scholar 

  • Miller SA, Dykes DD, Polesky HF . (1988). A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16: 1215.

    Article  CAS  Google Scholar 

  • Mori K, Shibanuma M, Nose K . (2004). Invasive potential induced under long-term oxidative stress in mammary epithelial cells. Cancer Res 64: 7464–7472.

    Article  CAS  Google Scholar 

  • Naito A, Cook CC, Mizumachi T, Wang M, Xie CH, Evans TT et al. (2008). Progressive tumor features accompany epithelial–mesenchymal transition induced in mitochondrial DNA-depleted cells. Cancer Sci 99: 1584–1588.

    Article  CAS  Google Scholar 

  • Owusu-Ansah E, Yavari A, Mandal S, Banerjee U . (2008). Distinct mitochondrial retrograde signals control the G1–S cell cycle checkpoint. Nat Genet 40: 356–361.

    Article  CAS  Google Scholar 

  • Pankratz SL, Tan EY, Fine Y, Mercurio AM, Shaw LM . (2009). Insulin receptor substrate-2 regulates aerobic glycolysis in mouse mammary tumor cells via glucose transporter 1. J Biol Chem 284: 2031–2037.

    Article  CAS  Google Scholar 

  • Pedersen PL . (1978). Tumor mitochondria and the bioenergetics of cancer cells. Prog Exp Tumor Res 22: 190–274.

    Article  CAS  Google Scholar 

  • Penta JS, Johnson FM, Wachsman JT, Copeland WC . (2001). Mitochondrial DNA in human malignancy. Mutat Res 488: 119–133.

    Article  CAS  Google Scholar 

  • Perez R, Garcia-Fernandez M, Diaz-Sanchez M, Puche JE, Delgado G, Conchillo M et al. (2008). Mitochondrial protection by low doses of insulin-like growth factor-I in experimental cirrhosis. World J Gastroenterol 14: 2731–2739.

    Article  CAS  Google Scholar 

  • Pollak M . (2008). Insulin and insulin-like growth factor signalling in neoplasia. Nat Rev Cancer 8: 915–928.

    Article  CAS  Google Scholar 

  • Quon MJ, Chen H, Ing BL, Liu ML, Zarnowski MJ, Yonezawa K et al. (1995). Roles of 1-phosphatidylinositol 3-kinase and ras in regulating translocation of GLUT4 in transfected rat adipose cells. Mol Cell Biol 15: 5403–5411.

    Article  CAS  Google Scholar 

  • Rhyu DY, Yang Y, Ha H, Lee GT, Song JS, Uh ST et al. (2005). Role of reactive oxygen species in TGF-beta1-induced mitogen-activated protein kinase activation and epithelial–mesenchymal transition in renal tubular epithelial cells. J Am Soc Nephrol 16: 667–675.

    Article  CAS  Google Scholar 

  • Terada S, Goto M, Kato M, Kawanaka K, Shimokawa T, Tabata I . (2002). Effects of low-intensity prolonged exercise on PGC-1 mRNA expression in rat epitrochlearis muscle. Biochem Biophys Res Commun 296: 350–354.

    Article  CAS  Google Scholar 

  • Unterluggauer H, Hutter E, Viertler HP, Jansen-Durr P . (2008). Insulin-like growth factor-induced signals activate mitochondrial respiration. Biotechnol J 3: 813–816.

    Article  CAS  Google Scholar 

  • Van Dyck E, Jank B, Ragnini A, Schweyen RJ, Duyckaerts C, Sluse F et al. (1995). Overexpression of a novel member of the mitochondrial carrier family rescues defects in both DNA and RNA metabolism in yeast mitochondria. Mol Gen Genet 246: 426–436.

    Article  CAS  Google Scholar 

  • Warburg O . (1956). On the origin of cancer cells. Science 123: 309–314.

    Article  CAS  Google Scholar 

  • Will Y, Hynes J, Ogurtsov VI, Papkovsky DB . (2006). Analysis of mitochondrial function using phosphorescent oxygen-sensitive probes. Nat Protoc 1: 2563–2572.

    Article  CAS  Google Scholar 

  • Witczak CA, Sharoff CG, Goodyear LJ . (2008). AMP-activated protein kinase in skeletal muscle: from structure and localization to its role as a master regulator of cellular metabolism. Cell Mol Life Sci 65: 3737–3755.

    Article  CAS  Google Scholar 

  • Wu WS . (2006). The signaling mechanism of ROS in tumor progression. Cancer Metastasis Rev 25: 695–705.

    Article  CAS  Google Scholar 

  • Zhdanov AV, Ward MW, Prehn JH, Papkovsky DB . (2008). Dynamics of intracellular oxygen in PC12 cells upon stimulation of neurotransmission. J Biol Chem 283: 5650–5661.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Kurt Tidmore for assistance with illustrations and to our colleagues in the Cell Biology Laboratory for helpful discussions. This work was funded by Science Foundation Ireland and the Health Research Board.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R O'Connor.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Favre, C., Zhdanov, A., Leahy, M. et al. Mitochondrial pyrimidine nucleotide carrier (PNC1) regulates mitochondrial biogenesis and the invasive phenotype of cancer cells. Oncogene 29, 3964–3976 (2010). https://doi.org/10.1038/onc.2010.146

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.146

Keywords

This article is cited by

Search

Quick links