Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Role of SUMO:SIM-mediated protein–protein interaction in non-homologous end joining

Abstract

Although post-translational modifications by the small ubiquitin-like modifiers (SUMO) are known to be important in DNA damage response, it is unclear whether they have a role in double-strand break (DSB) repair by non-homologous end joining (NHEJ). Here, we analyzed various DSB repair pathways upon inhibition of SUMO-mediated protein–protein interactions using peptides that contain the SUMO-interaction motif (SIM) and discriminate between mono- and SUMO-chain modifications. The SIM peptides specifically inhibit NHEJ as shown by in vivo repair assays and radio-sensitivity of cell lines deficient in different DSB repair pathways. Furthermore, mono-SUMO, instead of SUMO-chain, modifications appear to be involved in NHEJ. Immunoprecipitation experiments also showed that the SIM peptide interacted with SUMOylated Ku70 after radiation. This study is the first to show an important role for SUMO:SIM-mediated protein–protein interactions in NHEJ, and provides a mechanistic basis for the role of SIM peptide in sensitizing genotoxic stress of cancer cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Andrews EA, Palecek J, Sergeant J, Taylor E, Lehmann AR, Watts FZ . (2005). Nse2, a component of the Smc5-6 complex, is a SUMO ligase required for the response to DNA damage. Mol Cell Biol 25: 185–196.

    Article  CAS  Google Scholar 

  • Bennardo N, Cheng A, Huang N, Stark JM . (2008). Alternative-NHEJ is a mechanistically distinct pathway of mammalian chromosome break repair. PLoS Genet 4: e1000110.

    Article  Google Scholar 

  • Bird AW, Yu DY, Pray-Grant MG, Qiu Q, Harmon KE, Megee PC et al. (2002). Acetylation of histone H4 by Esa1 is required for DNA double-strand break repair. Nature 419: 411–415.

    Article  CAS  Google Scholar 

  • Carson JP, Zhang N, Frampton GM, Gerry NP, Lenburg ME, Christman MF . (2004). Pharmacogenomic identification of targets for adjuvant therapy with the topoisomerase poison camptothecin. Cancer Res 64: 2096–2104.

    Article  CAS  Google Scholar 

  • Franken NA, Rodermond HM, Stap J, Haveman J, van Bree C . (2006). Clonogenic assay of cells in vitro. Nat Protoc 1: 2315–2319.

    Article  CAS  Google Scholar 

  • Hardeland U, Steinacher R, Jiricny J, Schar P . (2002). Modification of the human thymine-DNA glycosylase by ubiquitin-like proteins facilitates enzymatic turnover. EMBO J 21: 1456–1464.

    Article  CAS  Google Scholar 

  • Kerscher O, Felberbaum R, Hochstrasser M . (2006). Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu Rev Cell Dev Biol 22: 159–180.

    Article  CAS  Google Scholar 

  • Krebber H, Silver PA . (2000). Directing proteins to nucleus by fusion to nuclear localization signal tags. Methods Enzymol 327: 283–296.

    Article  CAS  Google Scholar 

  • Mari PO, Florea BI, Persengiev SP, Verkaik NS, Bruggenwirth HT, Modesti M et al. (2006). Dynamic assembly of end-joining complexes requires interaction between Ku70/80 and XRCC4. Proc Natl Acad Sci USA 103: 18597–18602.

    Article  CAS  Google Scholar 

  • Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L . (2004). Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev 56: 185–229.

    Article  CAS  Google Scholar 

  • Muller S, Matunis MJ, Dejean A . (1998). Conjugation with the ubiquitin-related modifier SUMO-1 regulates the partitioning of PML within the nucleus. EMBO J 17: 61–70.

    Article  CAS  Google Scholar 

  • Pastink A, Eeken JC, Lohman PH . (2001). Genomic integrity and the repair of double-strand DNA breaks. Mutat Res 480–481: 37–50.

    Article  Google Scholar 

  • Pastwa E, Blasiak J . (2003). Non-homologous DNA end joining. Acta Biochim Pol 50: 891–908.

    CAS  PubMed  Google Scholar 

  • Prudden J, Pebernard S, Raffa G, Slavin DA, Perry JJ, Tainer JA et al. (2007). SUMO-targeted ubiquitin ligases in genome stability. EMBO J 26: 4089–4101.

    Article  CAS  Google Scholar 

  • Rogakou EP, Boon C, Redon C, Bonner WM . (1999). Megabase chromatin domains involved in DNA double-strand breaks in vivo. J Cell Biol 146: 905–916.

    Article  CAS  Google Scholar 

  • Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM . (1998). DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273: 5858–5868.

    Article  CAS  Google Scholar 

  • Sacher M, Pfander B, Hoege C, Jentsch S . (2006). Control of Rad52 recombination activity by double-strand break-induced SUMO modification. Nat Cell Biol 8: 1284–1290.

    Article  CAS  Google Scholar 

  • Sancar A, Lindsey-Boltz LA, Unsal-Kacmaz K, Linn S . (2004). Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem 73: 39–85.

    Article  CAS  Google Scholar 

  • Seufert W, Futcher B, Jentsch S . (1995). Role of a ubiquitin-conjugating enzyme in degradation of S- and M-phase cyclins. Nature 373: 78–81.

    Article  CAS  Google Scholar 

  • Shayeghi M, Doe CL, Tavassoli M, Watts FZ . (1997). Characterisation of Schizosaccharomyces pombe rad31, a UBA-related gene required for DNA damage tolerance. Nucleic Acids Res 25: 1162–1169.

    Article  CAS  Google Scholar 

  • Song J, Durrin LK, Wilkinson TA, Krontiris TG, Chen Y . (2004). Identification of a SUMO-binding motif that recognizes SUMO-modified proteins. Proc Natl Acad Sci USA 101: 14373–14378.

    Article  CAS  Google Scholar 

  • Song J, Zhang Z, Hu W, Chen Y . (2005). Small ubiquitin-like modifier (SUMO) recognition of a SUMO binding motif: a reversal of the bound orientation. J Biol Chem 280: 40122–40129.

    Article  CAS  Google Scholar 

  • Sonoda E, Hochegger H, Saberi A, Taniguchi Y, Takeda S . (2006). Differential usage of non-homologous end-joining and homologous recombination in double strand break repair. DNA Repair (Amst) 5: 1021–1029.

    Article  CAS  Google Scholar 

  • Stucki M, Jackson SP . (2006). gammaH2AX and MDC1: anchoring the DNA-damage-response machinery to broken chromosomes. DNA Repair (Amst) 5: 534–543.

    Article  CAS  Google Scholar 

  • Sun H, Leverson JD, Hunter T . (2007). Conserved function of RNF4 family proteins in eukaryotes: targeting a ubiquitin ligase to SUMOylated proteins. EMBO J 26: 4102–4112.

    Article  CAS  Google Scholar 

  • Tatham MH, Jaffray E, Vaughan OA, Desterro JM, Botting C, Naismith JH et al. (2001). Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9. J Biol Chem 12: 12.

    Google Scholar 

  • Uzunova K, Göttsche K, Miteva M, Weisshaar SR, Glanemann C, Schnellhardt M et al. (2007). Ubiquitin-dependent proteolytic control of SUMO conjugates. J Biol Chem 282: 34167–34175.

    Article  CAS  Google Scholar 

  • Weinstock DM, Jasin M . (2006). Alternative pathways for the repair of RAG-induced DNA breaks. Mol Cell Biol 26: 131–139.

    Article  CAS  Google Scholar 

  • Weinstock DM, Nakanishi K, Helgadottir HR, Jasin M . (2006). Assaying double-strand break repair pathway choice in mammalian cells using a targeted endonuclease or the RAG recombinase. Methods Enzymol 409: 524–540.

    Article  CAS  Google Scholar 

  • Xie Y, Kerscher O, Kroetz MB, McConchie HF, Sung P, Hochstrasser M . (2007). The yeast Hex3.Slx8 heterodimer is a ubiquitin ligase stimulated by substrate sumoylation. J Biol Chem 282: 34176–34184.

    Article  CAS  Google Scholar 

  • Yano K, Chen DJ . (2008). Live cell imaging of XLF and XRCC4 reveals a novel view of protein assembly in the non-homologous end-joining pathway. Cell Cycle 7: 1321–1325.

    Article  CAS  Google Scholar 

  • Yano K, Morotomi-Yano K, Wang SY, Uematsu N, Lee KJ, Asaithamby A et al. (2008). Ku recruits XLF to DNA double-strand breaks. EMBO Rep 9: 91–96.

    Article  CAS  Google Scholar 

  • Yurchenko V, Xue Z, Gama V, Matsuyama S, Sadofsky MJ . (2008). Ku70 is stabilized by increased cellular SUMO. Biochem Biophys Res Commun 366: 263–268.

    Article  CAS  Google Scholar 

  • Yurchenko V, Xue Z, Sadofsky MJ . (2006). SUMO modification of human XRCC4 regulates its localization and function in DNA double-strand break repair. Mol Cell Biol 26: 1786–1794.

    Article  CAS  Google Scholar 

  • Zhao X, Blobel G . (2005). A SUMO ligase is part of a nuclear multiprotein complex that affects DNA repair and chromosomal organization. Proc Natl Acad Sci USA 29: 4777–4782.

    Article  Google Scholar 

Download references

Acknowledgements

This work is funded by NIH Grants R01GM074748 and R01GM086171 to Y Chen, RO1CA120954 to JM Stark, R37CA050519-20 to DJ Chen and R01DE14183 to DK Ann. Y-J Li is a recipient of the NIH National Research Service Award (F32CA134180).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y Chen.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, YJ., Stark, J., Chen, D. et al. Role of SUMO:SIM-mediated protein–protein interaction in non-homologous end joining. Oncogene 29, 3509–3518 (2010). https://doi.org/10.1038/onc.2010.108

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.108

Keywords

This article is cited by

Search

Quick links